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Abstract. We have proposed Multi-Snake, which realizes boundary de-
tection in image recognition with the layered cooperation of micro agents
and macro agents. Cooperation in a set of micro agents constructs the
behavior of a macro agent, and cooperation of the micro agents are in-
tegrated to cooperation of the macro agents. This mechanism makes the
application more dynamic and flexible. Our previous proposals dealt with
cooperation between some macro agents of the same kind. This paper fo-
cuses on the cooperation of macro agents of different kinds: sensor-based
macro agents and model-based macro agents. We show that our proposal
makes estimation improved and more robust. We verify the effectiveness
of our proposal through some experiments using artificial images and
real images.

1 Introduction

Image recognition and feature extraction are still difficult to solve although there
have been many proposals applying various techniques including agents tech-
niques. Accurate boundary detection in an image is one of the most important
problems in image recognition, however it is also still difficult.

One of the most popular boundary detectors is Active Contour Model “Snake”,
proposed by Kass et al. [1]. The principle of Snake is an energy-minimizing spline
for estimating the closest contour of a target object in an image gradually from
an initial contour. This principle can be considered as a boundary detector real-
ized by cooperation in an aggregate of many micro agents, that is, the contour
is a single macro agent which consists of a set of micro agents. There have been
some proposals concerned with cooperation of macro agents. In this paper, we
discuss layered cooperation which integrates the cooperation of the micro agents,
who construct a macro agent, to the cooperation of the macro agents. In this
way, we can produce the macro cooperation from the micro cooperation. The
layered cooperation make this application more dynamic and flexible.

We have proposed Multi-Snake, the improvement of Snake in this manner.
This proposal so far has been concerned with cooperation of macro agents of
the same kind, and we verified its effectiveness [2-4]. Our another paper [5]
presented some preliminary idea on cooperation of macro agents of different
kinds, namely, sensor-based macro agents and model-based macro agents. In
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Fig. 1. Principle of Snake

this paper, we investigate some fundamental aspects on cooperation of macro
agents of different kinds based on cooperation of micro agents.

2 Active Contour Model, Snake

Snake is a deformable contour v(s) = [z(s),y(s)],s € [0, 1] that moves to mini-
mize an energy function Egpqke. The energy Eg,qre consists of an internal force
E;n:(v(s)) and an external force E..t(v(s)). Eint(v(s)) indicates elasticity and
smoothness of the contour, and E..:(v(s)) is derived from the image along the
contour v(s) so as to be attracted to a certain edge. Snake is formulated as
minimizing a spline of the energy function as follows:

Esnake = /{Eznt(v(s)) + Eezt(v(s))}ds (]‘)

Eint(v(s)) = (alvs(s)]* + Blvss (s)[*) / 2 (2)
Bear(v(s)) = =7V (v(s))|* (3)

where vs(s) and vss(s) denote the first and second derivative of the contour with
respect to s, VI is image intensity gradient, and each «, 3, and ~ are weight
coefficients. It means the value of this energy function gets smaller, if the shape
of the closed contour is more circular, if the circumference length is shorter,
or if the intensity gradient is larger. However, this tendency depends on the
parameter settings.

In general, Snake transforms the contour to minimize Fg, ke from an initial
closed contour provided by a user, and searches the target boundary. Snake
calculates the changes of the function value at each point, namely each control
point, on the closed contour, and moves the control point to a direction whose
energy gradient is the steepest as shown in Figure. 1(a). Therefore, it can be
considered that each control point is a micro agent and, the contour is a single
macro agent as an aggregate of the micro agents (Figure. 1(b)).

Snake searches the target boundary sequentially from the initial contour, so
that it tends to be influenced extremely by the initial contour. Snake also has



a drawback of strong dependence to the local information, which is intensity
gradient along the closed contour, as expressed in the formula (3). Hence, the
detection accuracy becomes worse when the target image consists of complicated
features. In order to address this kind of issue, various methods have been pro-
posed using some macro agents distributed in space, such as a method dividing
an image into several uniform regions beforehand [6], a method applying two
Snakes simultaneously to the target region and the background region [7], and a
method making some Snakes compete or cooperate [8,9]. However, they require
strict positioning of many sample points for the initial contour(s).

3 Multi-Snake

The original Snake has some drawbacks of its strong dependence on the param-
eters, the target features and the target image as mentioned above. In order
to address these drawbacks, we have proposed Multi-Snake, an improvement of
Snake by applying the agent technique, with the layered cooperation mecha-
nism [2-4]. This method uses several macro agents in parallel, each of which
runs its own Snake, to detect the boundary of a single target object. Each macro
agent does a different estimation being based on different solution space, using
different parameters, or being applied to closely-related different images. This
cooperation of macro agents are realized by the cooperation of micro agents,
that is, Multi-Snake has two layers as shown in Figure 2 (a) and (b). Some micro
agents, which are located at the same control point on the contour, exchange
their intermediate contour estimation with each other periodically, and adjust
their own contour estimations. This approach realizes robust estimation against
noises and textures, and improves estimation qualities.

When the gradient (the first derivative) of the energy function calculated
in a certain macro agent gets small, this means the agent gets near to a local
minimum or the global minimum. However, if the gradient in another agent still
keeps large at the same control point, it is supposed that the agent is not at
the global minimum but at a local minimum. Accordingly, in the micro agent
layer, each corresponding micro agent exchanges with each other the direction
which gives the largest energy gradient among its eight-neighbors, and follows
the direction which gives the largest gradient among the values from all the
micro agents. This scheme is shown in Figure 2(c). This exchange takes place at
every moment when the micro agents move control points. This cooperation of
the micro agents layer realizes the cooperation of the macro agents layer.

4 Model-based Snake

As mentioned above, Multi-Snake has two layers as shown in Figure 2 (a) and (b),
and we have verified its effectiveness, but using macro agents of the same kind
so far. To improve the estimation quality even more, we discuss cooperation
of macro agents of different kinds [5], namely sensor-based macro agents and
model-based macro agents. First, we introduce model-based Snake.
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Fig. 2. Cooperation mechanism of Multi-Snake

Snake is prone to complex shapes, concave boundaries, and pointed bound-
aries. In particular, the concave boundaries cannot be detected by adjusting its
parameters only, and this problem is still left as a big problem. This is caused
by the energy potential as shown in Figure 3 (a), in which arrows express the
forces to attract Snake to the target. A user must place an initial contour on
the region very close to the target concave region so as to make Snake converge
to the concave. Once Snake escapes from the energy potential to attract to the
concave, it is inevitable to transform into a straight line as shown in Figure 3
(b). This is the core of the problem. In order to solve this kind of problem, we
have an observation that the initial contour placed by a user implies (or can be
given easily) some information of the target shape.

There have been some methods using a model as information of the target
shape; for example, a proposal determines E;,,; which is suitable for the target
shape by presenting the prototype beforehand [10, 11], or another proposal deter-
mines a range of acceptable shape divergence by estimating the average shape of
target and the unevenness of shape [12-16]. In particular, Matsuzawa [16] adopts
the symbolized information, such as “corner”, “curve”, “segment”, and “arc”,
which is obtained from the shape of initial contour. Based on this symbolized
information, this method assigns these shape information to each control point
of Snake respectively, and makes control of Snake reflect the shape knowledge of
target region. This approach has an advantage of its ability which can include
the model with the process of boundary detection without giving up Snake’s
advantages of the ability of general-purposeness and handiness. Based on this
approach, we have considered modeling the fragment shapes of the initial con-
tour to bring in the model to the control of Snake. Matsuzawa’s symbolization
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Fig. 3. Around a concave boundary region

cannot describe the fine features, although control Snake by the target model
acquired from the shape information in an initial contour. Hence, we use the
curvature at each region more concretely.

Our model-based Snake, which we call Curvature Snake, selects the feature
points from the initial contour, and models the curvature among the feature
points. We bring in this curvature to Snake as a model.

Curvature Snake uses the energy function as follows:

Fos— / (Bint(0(5)) + Eont(0(5)) + Emoder(v(s)) }ds (4)
Emodel :6|E0 - Ecurv| (5)

curv

where E° . is the initial curvature calculated on a feature point on the initial
contour. These initial feature points are placed on the contour at an equal in-
terval (As) as shown in Figure 4 (a). E.ury is the current curvature calculated
on a feature point on the current contour at each moment. When the current
curvature approximates to the model (the initial curvature), E,,oq4. gets smaller,
therefore Curvature Snake can hold the information from the initial contour.

When we notice the details of transformation of Snake, namely the movement
of the control points, there is a case that the control points move along the
contour. Therefore, this method needs a mechanism corresponding between a
model and the current feature point. At each moment, the current feature point
is selected from the control point which is on the base-line. Curvature Snake
calculates E¢s (Form.(4)) only when it is on the feature points. When on the
other control points, it calculates the original energy function only. There would
be various kinds of base-lines, such as the normals in the initial contour, or the
line drawn from a gravity center of the initial contour; here we use the latter,
because the feature points gather to concave region according to the convergence
as shown in Figure 4 (b).

Now, we describe the calculation of curvature from the feature points. The
initial feature points is determined as the points dividing the initial contour at
an equal interval As (Figure 4(a)). From these feature points, the calculation
uses the first and second derivative as follows:
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Fig. 4. Principle of Curvature Snake
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where and yE is called x4, Tss, the curvature k; of feature point S; is
s

s
defined as follows:
_yssxs - xssys
CEROE
On the contrary, the current feature point in the detection process at time ¢ can-
not use the same equation as mentioned above, because its interval between the

feature points is different respectively (Fig. 4(b)). However, the current curvature

need not be completely exact, so that it is approximated during the detection
process as follows:

dw; @ip1 — @iy dw; xip1 —2x;i 4+ T
ds As;_1 + As; ds2 As;_q - As;
dyi  Yit2 — Yi-1 d?yi Yiv1 — 2y +Yia
ds As;_1 + As; ds2 Asi_q - As;

where As; is the arc between the feature point S; and S;11 as shown in Fig. 4(b).

5 Curvature Multi-Snake

Now we propose the layered cooperation of sensor-based agents and model-based
agents, namely, the original Snake agents and Curvature Snake agents. We call
this cooperation “Curvature Multi-Snake (CMS)”. Multi-Snake has two layers as
shown in Figure 2 (a) and (b), and CMS also has two layers.

In CMS, the original Snake cooperates with Curvature Snake at the feature
points, because there are cases that the only Curvature Snake cannot keep the



smoothness of the contour depending heavily on the shape of initial contour at
each feature point.

At a feature point which crosses the base-line, each micro agents exchanges
with each other the direction which gives the largest energy gradient among
its eight-neighbors, and follows the direction which gives the largest gradient
among the values from all the micro agents in the same manner of Multi-Snake.
The differences between Multi-Snake and CMS is only the occasion of when the
cooperation is happen. CMS makes agent cooperate only at the feature points.

The overall detection procedure of CMS is as follows:

Set an initial contour (by user)
Find the center of initial contour
Divide the initial contour at an equal interval (As)
Repeat for each control point on the contour
If the control point is on the base-line
Make Original Snake cooperate with Curvature Snake
Else
Find a new control point using the original energy
Until converged.

Preserving the model at each feature point by Curvature Snake, CMS is
able to overcome the difficulty of boundary detection without giving up Snake’s
advantage of the smooth result contour by this cooperation performed only on
the feature points.

6 Experiments

In order to verify the effectiveness of our proposal, we performed several experi-
ments about Curvature Snake and CMS. In these experiments, we used artificial
images (100 x 100 pixels) and real images (640 x 480 pixels) which have 256
levels of intensity for each color at each pixel.

First, we show results of experiments using some artificial images. Figure 5
(a) presents the initial contour in a solid black curve, (b) is the results of the
original Snake with («,f,v) shown under the pictures, and (c) is the results
of the single Curvature Snake with (a,f,7,d). In this experiment, Curvature
Snake does not cooperate with the original Snake on the feature points, but
uses the energy function Ecps only. On other control points, it performs the
same as the original Snake. The purpose of this is to verify the effectiveness of
the model force E, o4 added to the energy function. In this picture, the result
of boundary detection are shown in a solid black curve, the red pixels on each
contour are the feature points. The number of feature points is thirty. As shown
in (¢), Curvature Snake failed to exhibit enough accuracies even with preserving
shape. This is caused by the lack of desired effects of the model, namely the lack
of appropriate correspondence between initial feature points and the current
feature points. This result means that the single Curvature Snake has the target
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Fig. 5. The results of Curvature Snake and CMS

shape which cannot coordinate with the feature points as desired by a user. It
depends on the target shape or the movement of control points.

Then, we show how CMS influences the result accuracy when it makes original
Snake of parameters («,,7) cooperate with Curvature Snake of parameters
(0.0,0.0,0.0,0). In this case, Curvature Snake is not affected by E;,; and FEepy,
so that the micro agents of original Snake cooperate with a model-based micro
agent which depends on E,,,4.; only at each feature point. (d) is the result of this
case, and the parameters are shown under the pictures. This result shows the
improvement of the accuracy of detection boundary. Additionally, we performed
the experiments in which original Snake is cooperated with Curvature Snake with
parameters («, 3,7, d) instead of (0.0,0.0,0.0,6). (e) exhibits enough accuracies
as well as the experiments as in (d). In these experiments of CMS, we checked
which agents were chosen, and confirmed tendency to choose the original Snake
agent as its convergence progressed.

In the experiments of the single Curvature Snake (Figure 5 (c)), the process
of boundary detection is performed with parameters («, 3,7,d), so that Snake
is certainly influenced by the model force. On the contrary, the process in CMS
((d),(e)) chooses better suited agents according to both the contour shape and
the image force at each moment. This means that CMS adjusts the influence of
the model-based agents dynamically, consequently reduces the undesired trans-
formation of the contour in concave regions, and at the same time can detect
more smooth boundaries than the single Curvature Snake.

However, CMS cannot exhibit enough accuracy with all parameter sets. There
are some cases which failed to detect the concave region, for example we show
that results in Figure 6 (a) and (b). CMS can improve its accuracies by increasing
macro agents of original Snake whose parameter sets are different respectively.
We performed the experiments of CMS employing three agents, namely two
sensor-based agents and one model-based agent. Figure 6 (c) show the result, and
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Fig. 6. The results of CMS with 3 agents

Table 1. Performance

Point num |Loop Time Time/Loop
Original Snake| 103 0.157 0.00152
CMS 10 98 0.422 0.00431
CMS 20 78 0.359 0.00460
CMS 30 62 0.328 0.00529

through this experiment, we confirmed that CMS using three agents improved
the stability of concave detection and also the dependence on a parameter set
by reducing a tendency of boundary detection that parameters have. We also
performed another experiment employing three agents, that is one sensor-based
agent and two model-based agents, and (d) shows its result. This experiment
also improved the accuracy of boundary detection.

We adopted thirty feature points in the above-mentioned experiments. Here
we show the effect of changing the number of feature points for the detection
result. Figure 7 is the result of CMS using the different number of feature point,
and Table 1 shows the performance of this experiment. In this regard, we use two
agents, one is an original Snake agent with parameter (0.6, 0.4, 1.0) and another
is a Curvature Snake agent with parameter (0.6, 0.4, 1.0, 1.0). As in Figure 7,
the number of feature points affects its result of boundary detection. In Table 1,
“Loop” denotes the number of loops and “Time/Loop” denotes the execution
time of one loop. The Time/Loop of CMS is about three times longer than that
of original Snake. It is because of both of curvature calculation on each feature
point and calculation of E,,oqe; and k;.
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Fig. 7. Effects of the Number of Representative Points

Next, Figure 8 is the result of CMS using real images. (a) presents the in-
tensity of the image by color gradation, and (b) is the initial contour in black.
In this case, the number of control points is 1784 and the number of feature
points is 180. (c) is the result of original Snake of parameter (0.6, 0.4, 0.5), and
(d) is the result of CMS that original Snake of parameter (0.6, 0.4, 0.5) coop-
erating with Curvature Snake with (0.6, 0.4, 0.5, 1.5). Even with CMS, it failed
to exhibit enough accuracies with these parameter sets. This is caused by the
undesired correspondence between the initial and current feature points. The
target boundary has some concave regions, and this kind of targets needs some
additional technique to correspond between them. Another reason is that the
energy potential in the concave region is small. The intensity gradient is small
between the target region and the background, and as a result, the force to at-
tract to concave becomes smaller. Because the energy potential is formed by the
intensity gradient and the parameters. When = is set larger, (e) is the result of
original Snake with (0.6, 0.4, 1.0), and (f) is the result of CMS that it cooperates
with Curvature Snake with (0.6, 0.4, 1.0, 1.5). Through this experiment, CMS
realized the improvement of stability in the concave region, and we confirmed
the improvement of the accuracy.

7 Conclusions

Snake’s principle can be considered as a boundary detector realized by coopera-
tion in an aggregate of many micro agents, and according to this point, we have
proposed Multi-Snake, the layered cooperation which integrates the cooperation
of the micro agents, who construct a macro agent, to the cooperation of the
macro agents. However, the previous Multi-Snake used some macro agents of
the same kind. In order to improve its estimation quality, and to solve Snake’s
vulnerability with concave regions, this paper proposed Curvature Snake, which
adopts a curvature-based shape model based on information out of the initial
contour, and also proposed Curvature Multi-Snake, layered cooperation of micro
agents and macro agents of different kinds. We verified its effectiveness through
some experiments.

In the experiments of the single Curvature Snake, the drawbacks of Snake
to the concave region was improved. However, there is a shape which could not
exhibit enough accuracy even with Curvature Snake. This was caused by the
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Fig. 8. CMS: («,3,v)+(a, (8,7, 0) applied to real image

undesired correspondence between the feature points. On the other hand, in the
experiments of CMS improved the accuracy. In the detection process of CMS,
we confirmed a tendency that CMS chose the agent of the original Snake in the
last stages of convergence. This tendency shows that this layered cooperation of
macro agents of different kinds is not only improving its accuracy but also this
method is more dynamic and flexible. CMS can detect the boundary without
giving up Snake’s advantage which can obtain the smooth boundary.

In general, such kind of the complex shapes used in the experiment of real
image is difficult for Snake, and imposes a great deal of labors on a user to set the
initial contour and parameters suited for the target shape. Curvature Snake and
CMS also need to set the initial contour with the contrivance for preserving the
target shape. That is, the initial contour needs to be set to preserve the target
shape such as concavity and convexity. On the other hand, the parameters is
set through a certain amount of trial and error. Curvature Snake has the force
to preserve the shape, so the internal energy E;,; lessen its grip on Snake. As
a result, Curvature Snake and CMS have an advantage that makes easier to
determine parameters for users.

If the initial contour includes concave regions, there is a case of one-to-many
correspondence, namely an initial feature point and some current feature points.



We dealt with this issue by selecting the feature point whose interval is short-
est between the initial feature point and the current feature point. If Curvature
Snake and CMS failed to detect the boundary because of this kind of corre-
spondence, it will be preventable issue by cooperating with Curvature Snake of
different number of feature points.
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