
M. Klusch, M. Thimm, and M. Paprzycki (Eds.): MATES 2013, LNAI 8076, pp. 152–165, 2013.
© Springer-Verlag Berlin Heidelberg 2013

Peer-to-Peer Network for Flexible Service
Sharing and Discovery

Andrii Zhygmanovskyi and Norihiko Yoshida

Department of Computer Science, Saitama University, Japan
{andrew,yoshida}@ss.ics.saitama-u.ac.jp

Abstract. In this paper we present P2P-based approach for storing, sharing and
discovering services, which can be utilized as a base for agent cooperation in
distributed multiagent system. The approach is loosely based on Peer-to-Peer
based Web Service Discovery (PWSD) architecture and can be seen as its
extension and enhancement. Unlike most other P2P-based approaches it allows
flexible search queries since all of them are executed against internal database
present at each overlay node. The infrastructure proposed in the paper can
serve as a base for wide range of applications including distributed scheduling
scenarios and service mash-ups.

Keywords: peer-to-peer, agent cooperation protocol, service discovery, service
sharing.

1 Introduction

Nowadays computing is becoming more and more dominated by distributed applica-
tions which, in turn, grow to be more complex and require sophisticated protocols for
communication and cooperation between participants. On the other hand, many
distributed application scenarios can be executed by a set of intelligent agents thus
minimizing human participation or eliminating it at all. Since one of the main charac-
teristics of multiagent systems is cooperation, there have already been proposed
numerous agent cooperation protocols, such as Contract Net [1] or Recruiting Interac-
tion Protocol [2], which describe an interaction between agents toward finding the
most suitable agent for performing given task. However, classical approaches for
agent cooperation are foremost designed from the viewpoint of agent capabilities and
rarely take the distributed nature of multiagent systems into proper consideration.
More specifically, some cooperation models such as teamwork model [3] or joint-
intentions model [4] assume there are some shared memory locations that agents can
use to share their mental state and goals, but this is difficult to assume for distributed
environments. Other models like the Group Situation based Cooperation model [5]
assume that there are some global coordinator entities which can act as control entities
for other agents but it tends to make the model prone to errors and create bottlenecks
in a large-scale environment. These issues show a necessity for researching new
means of building distributed agent cooperation environment.

 Peer-to-Peer Network for Flexible Service Sharing and Discovery 153

In the current paper we propose an approach which is based on agent capabilities,
that is we associate each agent with set of services it provides, so that multiagent sys-
tem can be seen as distributed network of service providers. Dating back to the days
when service-oriented computing was only gaining its importance, it was stated that
every system which contains interacting services must ensure that the following fun-
damental processes are implemented in a correct and efficient way. First, a service
must be described usually using structures like keywords or property-value pairs.
Second, a service must declare its bindings and interfaces, as well as other informa-
tion that allows clients to invoke it. Third, there must be a mechanism which allows
for publishing all that information making a service discoverable. And lastly, service
discovering facilities must exist, namely, query construction, routing and execution,
as well as results propagation back to the requesting party. Again, since multiagent
systems have inherently distributed nature of, it is natural that managing the services
which are provided by each agent should be done in a decentralized way. Peer-to-peer
(P2P) based approach has already established a good reputation for storing and man-
aging content in a decentralized way, so it seems appropriate to use it for the distri-
buted service discovery. That is, nodes in the P2P overlay network, where each node
stores a description of some service in the network, act not only as routing providers
and data location services, but also as servers providing service access.

Despite the fact that P2P approach is successfully used for content storage and
management for about 15 years, service management systems based on it are still
quite sparse and, as a general rule, they either remain within academia or even don’t
evolve further than proof-of-concept stage. The earliest successful P2P-based service
discovery networks include Hypercube[6] and Speed-R. Also, many of proposed solu-
tions are based on Semantic Web approach for describing services. For instance, in
the approach described in [7] services are described using DAML-S while service
publishing and discovery mechanism based on JXTA technology. Similar approach is
used in [8], but Gnutella P2P overlay is used instead of JXTA. In [9] authors propose
to perform service search according to business aspect of services and not based on
service descriptions itself. This approach aims to facilitate better service composition
during service execution phase later. On the other hand, [10] presents a DHT-based
P2P overlay service network with partial keywords and wildcards matching support.
In this network authors use a special kind of DHT key mapping - locality preserving
mapping based on Space Filling Curves.

In this paper we propose a Web Service discovery architecture based on structured
P2P overlay network (namely, Chord [11]), which utilizes platform-independent
attribute-value based method for describing high-level properties of web services and
elaborate algorithm for service discovery that allows variety of queries including
range and fuzzy ones. This system is loosely based on the PWSD (Peer-to-Peer based
Web service discovery) architecture presented in [12] and can be seen as an extension
and enhancement of this approach. PWSD system concerns web service discovery in
a P2P environment with the implementation all of four fundamental processes men-
tioned above. It is a lightweight approach that uses attribute-value based service de-
scription without resorting to complex data description frameworks (i.e. Semantic
Web). It is based on Chord DHT and by extending it only a little contributes greatly to

154 A. Zhygmanovskyi and N. Yoshida

simplicity and modularity of the approach. The similarity of the goals and common
points in the ways to reach them are the main reasons why exactly PWSD was chosen
as the starting point of our solution.

Main differences between the approach taken in PWSD and the system proposed in
this article can be summarized as follows. First, while NVTree structure introduced in
PWSD and (a,v)-graph structure used in this paper bear a lot of similarities, our ap-
proach do not use any explicit serialization format for the service descriptions (like
XML-based WSDL format used in PWSD) and the algorithms for building abstract
service description itself differ considerably. More detailed comparison between
NVTree and (a,v)-graph is provided later in this article. Second, the approach to ser-
vice descriptions storing taken in this paper naturally allows range and fuzzy queries
which is not possible in PWSD system. And finally, while PWSD architecture in-
cludes an extension of Chord overlay network (named XChord), we show that actual-
ly there is no need for such extension to be based on some particular overlay network
and different structured P2P overlays could be used together or interchangeably.

While being inherently a framework that allows people collaborate on providing,
discovering and using services, the approach presented in this paper is designed in a
way that makes it possible to employ intelligent agents at some (or all) nodes. That is,
according to one of the definitions, which states that multiagent system is a “system in
which several interacting, intelligent agents pursue some set of goals or perform some
set of tasks” [13], the network for service sharing and discovery can delegate some
of its activities to an agent which resides in overlay node and is capable of performing
such tasks as negotiation and distributed scheduling minimizing human user participa-
tion in them. In fact, we regard this research direction as the most promising way to
expand our system to real applications.

The rest of the article is organized as follows. Section 2 presents the overview of
PWSD network. Section 3 present the architecture of proposed service sharing and
discovery network including service description, service storing and service discovery
mechanisms. Section 4 presents the experimental results. Conclusions are given in the
section 5.

2 Web Service Discovery in PWSD

Given that we have a valid service description, we obtain a set of keys from it and
pass them to the hash function such as MD5 to generate a set of Hash IDs (HID)
which are used to locate appropriate peers by means of Peer-to-Peer routing algo-
rithms. Subsequently, HIDs are published to the target peers, which cache the descrip-
tion in router repositories thus completing the publishing process. The process of
service locating is roughly the same. Thus, the key step in service publishing and
locating process is looking up a peer node according to HID, which was made
possible by extending routing algorithm of Chord DHT.

Each peer in PWSD acts as a service peer (SP), which not only provides Web ser-
vice access, but also acts as a peer in the Peer-to-Peer overlay network. Several
logical machines can share one piece of hardware as well as it’s possible for a single
logical machine to consist of several physical machines. Each logical machine con-
sists of three active components (Web Service Discovery Interface component, core

 Peer-to-Peer Network for Flexible Service Sharing and Discovery 155

component, router) and one passive component called local repository. The roles and
structure of these components are described in detail in [12].

Service locating algorithm specifies how to route the requests to the service peers
who satisfy service request conditions. In PWSD, the service request is expressed in
XML, since it’s consistent with XML-based service descriptions stored in the destina-
tion service peers. However, the routing algorithm, Chord, in underlying Peer-to-Peer
overlay network only supports exact match queries within each service description
keyword. That’s why authors presented an extension to Chord algorithm called
XChord which supports XML based conditional match. In PWSD, WSDL is used to
describe the Web service interface, and the service description is generated based on
the content of WSDL document and the description that user inputs before publishing.

Service description generation in PWSD is based on the structure called NVTree
(node-value tree). More precisely, an XML based tree node extraction approach is
used for generating service descriptions. Example service description and its corres-
ponding node-value tree can be found in the original paper [12]. It is worth noticing
that only significant elements in service description will be extracted and inserted into
the NVTree, and only the meaningful nodes in the NVTree will be used to generate a
hash value, which in turn will be used as a hash key for service description and will
be inserted into P2P overlay network. In PWSD, simple node-splitting method is used
to extract each node-value pair to form NVTree and independently map them onto a
key. However, only the leaf nodes in NVTree have a pair of node and value. Further-
more, in order to preserve the hierarchical relationship, the parent node of the leaf
node is also extracted. Those nodes whose values consist of several words are further
divided into single word value based nodes. After splitting the NVTree into separated
simple description nodes, they are concatenated as strings, which are, in turn, passed
to the hash function to produce hash IDs. These hash IDs are used as keys to insert
into the underlying P2P overlay using XChord algorithm.

To search for a Web service, the client specifies query conditions by composing an
XML document. Also, conditions can be combined using logical operators (or, and) to
form composite queries. The query is processed in a way similar to the service de-
scription processing. That is, the XML document is transformed to the NVTree and
then to simple description nodes. These nodes are concatenated as strings and hash
ID is obtained using the same hash function from the underlying P2P overlay net-
work. Since those hash IDs are, in fact, the keys in the underlying P2P overlay, usual
DHT-based search is performed to answer the query. Finally, search results are fur-
ther combined according to the logical operators used (set union for logical and, set
intersection for logical or).

3 Service Sharing and Discovery Network

3.1 Overview

The idea of building service sharing and discovery network based on P2P overlay
itself is not innovative, since it allows for avoiding many problems that arise in cen-
tralized scenarios like single point of failure, poor scalability or lack of robustness.

156 A. Zhygmanovskyi and N. Yoshida

Nevertheless, even nowadays most of P2P-based systems deal with simple content
sharing, which is fundamentally different from functionality of sharing services. Still,
there is a range of problems in common that are present in both cases, most crucial of
them being appropriate descriptions of items shared (content or services) as well as
creating flexible and efficient search functionality that provide results relevant to the
users criteria as much as possible. PWSD system described in the previous part of this
article was designed to provide a solution to both these problems and it does so to
some extent. From the other hand, authors of that approach made several architectural
decisions which actually make the system less flexible in terms of basic problems
mentioned above, namely service descriptions and service discovery. In this article we
try to eliminate the shortcomings of the PWSD system by introducing more elaborate
and platform-independent approach for describing services and formulating search
queries.

The pivotal point of the system proposed is original platform-independent format
of service descriptions. It is similar to the separate node descriptions obtained from
NVTree in PWSD, but more exactly, it is based on Intentional Name System naming
approach described in detail in [14]. Unlike PWSD, where service descriptions are
initially given in XML format, the approach in our system is based on abstract graph-
based attribute-value description of services which are called (a,v)-graph. The under-
lying serialization format of the graph is actually not important since it is not the
part of the framework itself. We also propose several ways for building description
graph, including utilization of existing descriptions, automatic description building
and manual description input.

Despite the fact that NVTree and (a,v)-graph have much in common, it is the dif-
ferences that make (a,v)-graph structure more flexible. In order to get a better view on
advantages of the approach proposed in this paper we need to outline those differenc-
es more clearly. As can be seen from the way of building the NVTree, it is basically a
tree representation of a XML-based (actually, WSDL-based) service description
which is further split into atomic attribute-value pairs, where value nodes contain
typed data (in case type information is not available, the value is assumed to be of
string type). Besides, the information present in NVTree comprises all data found in
the original service description, including the routing, binding and service owner in-
formation about the service itself. On the other hand, while (a,v)-graph uses the same
attribute-value structure, it serves as basic format for the service description itself,
which, among other ways, could be obtained by transforming corresponding service
descriptions, including XML-based ones. Besides, (a,v)-graph structure contains only
information that is meaningful for the service discovery, and also can be easily
extended to contain the value type specification, so search queries could be executed
in a type-aware way. Also it is important to note that service owner and binding in-
formation are included in the (a,v)-graph as a special node which is essential to the
further execution of discovered services.

Another difference concerns the point of how those attribute-value pairs are used in
the hashing process. The approach in PWSD is as follows - attribute and value string

 Peer-to-Peer Network for Flexible Service Sharing and Discovery 157

are concatenated and passed as an argument to the hash function which determines the
place where this piece of information is stored in the overlay network. The approach
in the (a,v)-graph is similar but instead of hashing attribute and value altogether, the
hash is computed only for attribute node and corresponding subgraph of the (a,v)-
graph is copied to the responsible node according to obtained hash value. This way
the structure stored at the responsible is still an (a,v)-graph, which allows for the que-
ries to be much more flexible, which includes fuzzy and range queries. Flexibility of
the queries is also stipulated by the fact that actual mechanism of (a,v)-graph storage
is not defined, so different implementations can choose the best one for the specific
needs.

The next step for services discoverability after descriptions is the way how they are
stored in a distributed manner in P2P overlay network. Similarly to PWSD we chose
Chord overlay for this purpose, but while the authors of PWSD decided to extend
Chord DHT algorithm, scheme for storing and discovering service descriptions
proposed in this article is overlay-independent. That is, the algorithms of storing,
removing, updating and locating the services are defined in the layer completely dis-
connected from the DHT layer and deal with only with abstract notions like “respon-
sible node”. This way it is possible to have multiple layers of overlays for service
storage (for instance, to increase reliability or distribute the load), and those overlays,
in fact, do not have to be the same. This approach will be described in more detail in
the next sections. Finally, we present abstract format of querying the distributed data-
base of service descriptions which makes possible wide range of conditions including
fuzzy conditions, range queries and complex values lookup.

Table 1. Key differences between NVTree and (a,v)-graph

NVTree (a,v)-graph

• is a result of WSDL document
transformation

• there is no distinction between
binding properties and proper-
ties of a service itself

• hash value is based on concate-
nated attribute-value pair

• responsible node is storing only
a hash value like a piece of
content

• supports only exact match que-
ries within given keyword

• is basic abstract format for storing service
properties

• contains binding information as a special
node

• hash value is based solely on the attribute
• a structure that responsible node is storing

is also an (a,v)-graph
• supports fuzzy and range queries

158 A. Zhygmanovskyi and N. Yoshida

3.2 Service Description

Each service in the network is described using attribute-value format, forming so
called (a,v)-pairs, where attribute stands for the arbitrary property of a service. While
attributes can obviously be only of string type, values are not required to be of string
type only, so they can be of any type which is, in principle, queryable, serializable and
can be efficiently stored by the underlying DHT storage mechanism. So, for example,
as it is shown on the Fig. 1, value can be an array (like ‘location’ attribute, which
contains latitude and longitude values) or even an arbitrary object (like ‘availability’
attribute). One more significant difference from the approach taken in PWSD is that
all (a,v)-pairs form a connected graph, called (a,v)-graph, which always includes one
extra node, that represents routing and binding information for the service itself. In
real life situations it’s not rare when one node provides access to several services, so
each service is described using (a,v)-graph.

One of the most challenging issues for any new approach or framework is to pro-
vide compatibility with existing technologies, which are already widely used. It is
important to note again that (a,v)-graph approach is just an abstract model of service
description, therefore it should be seen as an output of some model transformation
function. In our system the possible ways of obtaining the resulting (a,v)-graph model
are as follows:

Manual Input. The simplest case where user enters all service description informa-
tion manually, usually with some kind of GUI, but batch information input, for
instance, by uploading the file with multiple attribute-value pairs is also possible.
Regardless of how the data is put into the system, it always can be processed and
transformed to the underlying (a,v)-graph serialization format

Transformation of Existing Service Description. To address the issue of compati-
bility the system must have a way to obtain (a,v)-based descriptions from existing
ones. In our case this is achieved by applying necessary mode transformations, exact
nature of which depends on the representation of existing models. But since in most
cases existing services are described using XML-based industry standards like WSDL
or OWL-S, Extensible Stylesheet Language Transformations (XSLT) language seems
to be the most appropriate choice for model transformation in this case, due to its high
expressive power and ability to output virtually any kind of data format using XML
data as input. It is important to note that in most cases existing service description
need to be transformed to (a,v)-based one only partly, since low-level details of a
service (like protocol name, input parameters enumeration, IP address etc) are gener-
ally not searched upon. However, those low-level details can still be present in (a,v)-
graph in the service description node to facilitate the process of binding and routing
when the service is actually used.

Automatic Augmentation. Among service description properties there are often ones
that are highly important as a search criteria but normally are neither supposed to be

 Peer-to-Pe

Fig

input by humans nor prese
such properties are curre
job queue, various QoS da
(like current node reputatio
using various means, incl
functionality or network mo

3.3 Service Description

In the approach, proposed
store service descriptions in
in DHT we need to define
nodes in the overlay. In ou
and decide the node in the
Chord DHT it is successor

F

eer Network for Flexible Service Sharing and Discovery

g. 1. (a,v)-graph for service description

ent in traditional static service descriptions. Examples
ent geographical location of the service, status of
ta (like performance or latency) and sharing network d
on). All those data can actually be obtained automatica
luding automatic location detection, internal monitor
onitoring and QoS protocols.

n Storing

in this article, Chord DHT peer-to-peer overlay is used
n a distributed manner. As usual, in order to store cont
what will act as a key and what exactly will be stored

ur system, we apply hash function to each attribute na
overlay which is responsible for this attribute - in case

r of a key. In terms of our approach, this node is cal

Fig. 2. Merged (a,v)-graph example

159

s of
the

data
ally
ring

d to
tent
d at
ame
e of
lled

160 A. Zhygmanovskyi and N. Yoshida

responsible for the attribute and therefore will store subgraphs of a form [attribute,
value, service description], that is, subgraphs based on given attribute, of all
(a,v)-graphs in the network. In the result, we obtain a structure called merged (a,v)-
graph in each node that is responsible at least for one attribute. Example of merged
(a, v)-graph is shown in Fig. 2.

Next we present formalized version of service description storing algorithm. Each
peer ܲ in the overlay owns two graphs, namely, ܲ. ܱܵ – graph for the services it
owns, and ܲ. ܵܵ – graph for the services from other peers it stores. The formal defini-
tion of both graphs is as follows: ܲ. ܱܵ ൌ ൫ ௏ܸ ׫ ஺ܸ ׫ ሼ݀ݏሽ, ஺,௏ܧ ׫ .ܲ ௏,ௌ஽൯ andܧ ܵܵ ൌ ൫ ௏ܸ ׫ ஺ܸ ׫ ,ܦܵ ஺,௏ܧ ׫ set of nodes that correspond to the – ࢂࢂ ௏,ௌ஽൯, whereܧ
attributes of the service, ࢂ஺ – set of nodes that correspond to the values of the
attributes, ࢙ࢊ - node which contains the low-level service description (including an
information for the owner node), ࡰࡿ – set of ࢙ࢊ nodes, ࢂ,࡭ࡱ – set of edges ሺ࢜࡭, ࡭࢜|ሻࢂ࢜ א ,࡭ࢂ ࢂ࢜ א ࡰࡿ,ࢂࡱ and ࢜ࢂ – set of edges ሺ࢜ࢂ, ࢂ࢜|ሻࢊ࢙ א ,࢜ࢂ ࢊ࢙ א ࢊ࢙ ר ࡰࡿ ൌ -Then, we assume that for each peer in the overlay the following two func .ࢊ࢙
tions are defined: ࢎ - hash function used to build an overlay, and ࢊ࢔࢏ࢌ - function
that returns the node from the overlay by hash value. The pseudocode for service
description storing algorithm is shown in Fig. 3.

It’s not essential to the architecture of the system how exactly merged (a,v)-graphs
are stored at the node, but storage mechanism should be chosen in a way which
makes possible answering complex queries like comparison, substring checks, set
operations and so on. Therefore, the most appropriate choices for storage mechanism
are relational databases or document-oriented databases, both of which have their own
advantages and disadvantages.

 foreach service ݏ from ܲ. ܱܵ
 foreach ݒ஺ א .ݏ ஺ܸ
 ;(஺ݒ)h =:ܪ
 ܲ:= find(ܪ);
 if not exists ݒ஺כ א ܲ. ܵܵ. ஺ܸ where ݒ஺כ ൌ ஺ݒ
 ܲ. ܵܵ. ஺ܸ:= ܲ. ܵܵ. ஺ܸ ׫ ሼݒ஺ሽ;
 end if
.ܲ from כ݀ݏ get =:כ݀ݏ ܵܵ. כ݀ݏ where ܦܵ ൌ .ݏ ;݀ݏ
 if כ݀ݏ is NULL
 ܲ. ܵܵ. .ܲ =:ܦܵ ܵܵ. ܦܵ ׫ ሼݏ. ;ሽ݀ݏ
.ݏ =:כ݀ݏ ;݀ݏ
 end if
 ܸ:= ሼݒ௏ א .ݏ ௏ܸ|ሺݒ஺, ௏ሻݒ א .ݏ ;ሽܧ
 foreach ݒ א ܸ
 ܲ. ܵܵ. ௏ܸ:= ܲ. ܵܵ. ௏ܸ ׫ ሼݒሽ;
 ܲ. ܵܵ. .ܲ =:ܧ ܵܵ. ܧ ׫ ሼሺݒ஺, ;ሻሽݒ
 ܲ. ܵܵ. .ܲ =:ܧ ܵܵ. ܧ ׫ ሼሺݒ, ;ሻሽכ݀ݏ
 end foreach
 end foreach
end foreach

Fig. 3. Service description storing algorithm

 Peer-to-Peer Network for Flexible Service Sharing and Discovery 161

3.4 Service Discovery

Among one of the most significant drawbacks of DHT-based P2P overlays is that the
principles of content storage and its association with a key usually allows only for
exact query conditions when searching. Alternative, there are some elaborate ap-
proaches addressing this issue which, but again they usually offer only wildcard
matching. The approach we propose in this article is based on the way service
descriptions are stored in the overlay network, that is, using merged (a,v)-graph.

Firstly, we assume that each search query in the system is submitted in the form,
shown in Fig. 4 or can be represented as such. Here we let opi(A

i) be some operators
(=, !=, contains, >, < etc) defined on the sequence of attributes Ai as parameters, Ai
- sequence of attributes [a1,a2,...,an] (where n is arity of the operator opi.) and lopi
denote logic operators OR or AND. This format itself is very generic, so we think that
it represents most of meaningful search queries submitted in P2P networks. You can
see a concrete example of the query in Fig. 5.

op1(A1) lop1 op2(A2) lop2 ... lopn-1 opn(An)

Fig. 4. Generic search query format

service-type = 'doctor'
AND

(location = 'Tokyo' OR location = 'Yokohama')
AND

availability > 'June 15th, 2012, 2:00PM'
AND

availability <= 'June 17th, 2012, 9:30AM'

Fig. 5. Example of search query

Algorithm of search query routing and execution is formalized below. Note that the
algorithm actually doesn’t require any extensions for the underlying DHT algorithm.
The query issued by the peer in the form shown in Fig. 4 can be represented as a
graph ࢁࡽ ൌ ሺࡽ ׫ ,ࡼࡻࡸ ሻࡱ , where ࡽ ൌ ሼ࢏ࢗ ൌ ሺ࢏ࢇ, ࢏|ሻ࢏࢖࢕ ൌ ૚ … ሽ࢔ - the set of
query terms, ࡼࡻࡸ ൌ ሼ࢏|࢏࢖࢕࢒ ൌ ૚ … ሽ࢔ – the set of logical operators and ࡱ ൌڂ ሼሼሺ࢏ࢗ, ሻሽ࢏࢖࢕࢒ ׫ ሼሺ࢏࢖࢕࢒, ୀ૚࢏࢔ା૚ሻ࢏ࢗ ሽሽ. In addition to peer functions ࢎ and ࢊ࢔࢏ࢌ intro-
duced in the section 3.3, we assume that each peer have function ࢋ࢚ࢇ࢛࢒ࢇ࢜ࢋ which
returns the result of evaluating a query term again internal database of the peer. Simi-
larly, we define graph ࡿࡱࡾ ൌ ሺࡾ ׫ ,ࡼࡻࡸ ࡾ ሻ, whereࡱ ൌ ሼ࢘࢏|࢏ ൌ ૚ … ሽ - initially࢓
empty set of results obtained from peers after evaluating a query term, ࡼࡻࡸ
is the same as ࢁࡽ. ࡱ and ࡼࡻࡸ ൌ ڂ ሼሼሺ࢘࢏, ሻሽ࢏࢖࢕࢒ ׫ ሼሺ࢏࢖࢕࢒, ୀ૚࢏࢔ା૚ሻ࢏࢘ ሽሽ. Also we de-
fine the set of pairs ࡯ ൌ ሼሺת,ࡾࡻሻ, ሺ׫,ࡰࡺ࡭ሻሽ which shows the one-to-one correspon-
dence between logical operators and set-theoretical operations. Pseudocode for the
algorithm is shown in Fig. 6.

162 A. Zhygmanovskyi and N. Yoshida

foreach ݍ א ܷܳ. ܳ
.ݍ)h =:ܪ ܽ);

 ܲ:= find(ܪ);
 ܴ:= ܲ.evaluate(ݍ);
.ܵܧܴ .ܵܧܴ=:ܴ ܴ ׫ ሼܴሽ for corresponding ݈݌݋ א ;ܱܲܮ

end foreach
return ݎଵ ܥሾ݈݌݋ଵሿ ݎଶ ܥሾ݈݌݋ଶሿ … ௡ݎ ௡ିଵሿ݌݋ሾ݈ܥ
 where ݎ௜ א .ܵܧܴ ܴ, ௜݌݋݈ א .ܵܧܴ ;ܱܲܮ

Fig. 6. Search query routing and execution algorithm

4 Results

The implementation of the framework described above has been done using Chord
overlay and consists of the following main modules: Chord overlay, the service sto-
rage, statistics and operational information collection module and the visualizer. To
demonstrate the system operation we chose a domain which consists of three types of
entities, namely hotels, museums and baseball matches, which act like services to be
stored and queried in the P2P-based services network. The attributes (and data types
of respective values) used to describe each type of service are shown in the table 2.

Given services are then put into the service storage network according to the pro-
cedure described in the section 3.3, that is, a hashing function defined in the underly-
ing Chord overlay is applied to each attribute and according to its value the attribute

Table 2. Service types and attributes for the service P2P network example

Hotel Museum Baseball match

• name
• suite type (single or

double)
• price for the one

night stay
• meals (yes/no field)
• number of available

rooms
• location

• name
• type of exhibition

(painting, sculpture,
photograph)

• entrance fee
• start date of exhibition
• end date of exhibition
• time the exhibition

opens (daily)
• time the exhibition

closes (daily)
• location

• league
• (Central, Pacific)
• competing teams (pair)
• venue name
• price
• date of the match
• time the match starts
• time the match ends
• venue location

 Peer-to-Peer Network for Flexible Service Sharing and Discovery 163

for the given service is stored at the according node. The storage layer itself is imple-
mented using MongoDB, document-oriented “no-SQL” database engine, which suits
best for the storage of attribute-value data due to its flexibility and relative simplicity.
In the course of the implementation of the storage layer it became clear that at least
three database tables per node are needed for the full coverage of basic data manipula-
tion functions, that is (1) putting service to the storage, (2) updating service stored at
the overlay, (3) removing service from the storage and (4) getting service from the
storage based on the query. The tables and their structure are shown in the table 3.

Table 3. Database tables used for storing services at storage node and their structure

Local service data Remote service data Service attributes data

comprehensive data
about given node ser-
vices locally

attribute data for services
in the overlay network;
all attributes the node is
responsible of are stored

information about responsi-
ble nodes for attributes of
given service; service, re-
sponsible for storing this
information, is determined
by hashing service name
itself;

After the data is placed in the overlay we can perform services search using the

query format described earlier in this article. The sample query and result returned for
it are shown in Fig. 7.

Fig. 7. Sample query and result

164 A. Zhygmanovskyi and N. Yoshida

As to the evaluation of the approach proposed in this paper, we compare it to
PWSD approach in terms of query flexibility. As was already stated earlier, in current
approach, the way descriptions are stored in the overlay and the way queries are han-
dled allow for virtually every query underlying database can handle. Given the exam-
ple query shown in Fig. 5, the way of its handling would be the following: we split the
query according to the attributes used in it (in this case it would be 3 groups for
attributes service-type, location and availability respectively), find the nodes respon-
sible for each attribute and let them execute their part of the query against their own
internal database, which is assumed to be able to handle range queries as well (that is,
using operators >, < etc.). On the other hand, mechanism proposed in PWSD cannot
handle the range part of this query, since, as was described in section 2, each peer
stores hash value of the (attribute, value) pair, naturally allowing only exact match
queries against data in the original service description.

5 Conclusions

This paper presents the application of P2P technology to solve the problem of effi-
cient services sharing and discovering in a decentralized way. The main advantages of
proposed approach are the usage of well-known Chord overlay, which guarantees the
correctness and soundness of underlying P2P overlay, and the approach which allows
complex, fuzzy and range queries nevertheless keeping the structured overlay ap-
proach, while modular framework architecture allows using virtually any P2P overlay
and storage mechanism. From the other hand, many of open issues remain, such as
introducing distributed transactions for overlay services manipulations, nodes identi-
ties that are not tied to the node address (mainly for ad hoc networks) and correct
management of services for departed and newly joined nodes.

References

1. Foundation for Intelligent Physical Agents. FIPA Contract Net Interaction Protocol Speci-
fication, version H, http://www.fipa.org/specs/fipa00029/index.html

2. Foundation for Intelligent Physical Agents. FIPA Recruiting Interaction Protocol Specifi-
cation, version H, http://www.fipa.org/specs/fipa00034/index.html

3. Jennings, N.R.: Controlling cooperative problem solving in industrial multi-agent systems
using joint intentions. Artificial Intelligence 75(2), 195–240 (1995)

4. Pynadath, D.V., Tambe, M., Chauvat, N., Cavedon, L.: Toward Team-Oriented Program-
ming. In: Jennings, N.R. (ed.) ATAL 1999. LNCS, vol. 1757, pp. 233–247. Springer, Hei-
delberg (2000)

5. Kim, M.S., Kim, M.K., Lee, J.T.: Group Situation based Cooperation Model. In: Proceed-
ings of the 2007 International Conference on Convergence Information Technology
(ICCIT 2007), pp. 1372–1377 (2007)

6. Schlosser, M.T., Sintek, M., Decker, S., Nejdl, W.: HyperCuP – Hypercubes, Ontologies
and Efficient Search on P2P Networks. In: Moro, G., Koubarakis, M. (eds.) AP2PC 2002.
LNCS (LNAI), vol. 2530, pp. 112–124. Springer, Heidelberg (2003)

 Peer-to-Peer Network for Flexible Service Sharing and Discovery 165

7. Ramljak, D., Matijašević, M.: SWSD: A P2P-Based System for Service Discovery from a
Mobile Terminal. In: Khosla, R., Howlett, R.J., Jain, L.C. (eds.) KES 2005. LNCS
(LNAI), vol. 3683, pp. 655–661. Springer, Heidelberg (2005)

8. Paolucci, M., Sycara, K., Nishimura, T., Srinivasan, N.: Using DAML-S for P2P Discov-
ery. In: International Conference on Web Services, ICWS 2003 (2003)

9. Hu, J., Guo, C., Wang, H., Zou, P.: Web Services Peer-to-Peer Discovery Service for Au-
tomated Web Service Composition. In: Lu, X., Zhao, W. (eds.) ICCNMC 2005. LNCS,
vol. 3619, pp. 509–518. Springer, Heidelberg (2005)

10. Schmidt, C., Parashar, M.: A Peer-to-Peer Approach to Web Service Discovery. J. World
Wide Web 7, 211–229 (2003)

11. Stoica, I., Morris, R., Karger, D., Kaashoek, M.F., Balakrishnan, H.: Chord: a scalable
peer-to-peer lookup service for Internet applications. In: Proceedings of ACM SIGCOMM
2001, pp. 149–160. ACM (2001)

12. Li, Y., Zou, F., Wu, Z.-D., Ma, F.-Y.: PWSD: A Scalable Web Service Discovery Archi-
tecture Based on Peer-to-Peer Overlay Network. In: Yu, J.X., Lin, X., Lu, H., Zhang, Y.
(eds.) APWeb 2004. LNCS, vol. 3007, pp. 291–300. Springer, Heidelberg (2004)

13. Weiss, G. (ed.): Muliagent Systems. The MIT Press, Cambridge (1999)
14. Winoto, W.A., Schwartz, E., Balakrishnan, H., Lilley, J.: The design and implementation

of an intentional naming system. In: Proceedings of the Seventeenth ACM Symposium on
Operating Systems Principles, vol. 33(5), pp. 186–201. ACM (1999)

