
International Journal ofComputational Science

1992-6669 (Print) 1992-6677 (Online) www.gip.hk/ijcs

© 2009 Global Information Publisher (H.K) Co., Ltd.

2009, Vol. 3, No. 5, 554-567.

Design and Implementation of Executable UML Platform \

for Assertion-based Dynamic Verification j

Masahito Sugai, Akira Teruya, Eiichiro Iwata,

Noriko Matsumoto, Norihiko Yoshida* j

Department of Information and Computer Sciences, Saitama University,

255 Shimo-Ohkubo, Saitama 338-8570, Japan

{masahito, akira, eiichiro, noriko, yoshida}@ss.ics.saitama-u.ac.jp

Abstract. Executable UML (xUML) is executable, thus verifiable on top of rigorous seman

tics. This paper proposes a platform of dynamic property verification, or assertion-based dy

namic verification for xUML specifications. The assertion-based verification improves effici

ency and reliability of the design process, for instance, of embedded systems. The design and

implementation of the platform, and some simple verification examples are presented.

Keywords: Assertion-based verification, dynamic verification, executable UML.

1 Introduction

Embedded systems have grown incredibly large and complex, and their verification is becoming sig

nificantly important. The man-hour requirement of verification is also increasing. Hence efficient

verification techniques are strongly required.

Recently, in the embedded systems design paradigm, Executable UML (xUML) [1] is attracting

attentions, as its model can be executed and verified on a simulator. It is a crucial issue to improve

the efficiency of the xUML verification.

One of the most effective verification techniques is assertion-based verification [2], which im

proves verification efficiency and reliability of the systems. Assertion-based verification uses "asser-

* Corresponding Author. Email: yoshida@mail.saitama-u.ac.jp.

554 ^Global Information Publisher

Design and Implementation of Executable UML Platform for Assertion-based Dynamic Verification

; tions" which are declarations of required properties for a target system, and checks the target for ass-

I ertion violations. Assertion-based verification checks assertions only, whereas conventional verifi-

i cation checks all the statements in the whole code. Therefore it improves verification efficiency. This

| verification technique is also divided into the same two types as conventional verification technique:

! assertion-based static verification and assertion-based dynamic verification. The former checks all

I the possibilities for assertion violations exhaustively. The latter checks target codes for assertion

; violations in simulation.

- Assertion-based verification is considered also effective to improve the verification efficiency on

\ xUML [4]. Xie et al. proposed assertion-based static verification for xUML [5]. They defined new

| property specification language, xPSL, for declaring assertions. xPSL is an extended language to

PSL that supports declarations such as the variables, events, state, and so on. Both an xUML model

and xPSL assertions for it are translated into a formal language, which is an input format to the

! existing tool. Although this research focuses on the assertion-based static verification, the asser-

i tion-based dynamic verification is also necessary for the verification on xUML because the latter

! executed in simulation is more feasible and practical than the former.

| Based on the above-mentioned background, we propose the assertion-based dynamic verifica-

(tion for xUML in this paper. There are no other researches on this topic than ours as far as we know.

j In particular, this paper presents how the assertion-based dynamic verification is realized in xUML.

i This research will contribute to improve verification efficiency, and design process as a whole in

j industry.

| The rest of this paper is organized as follows: Section 2 summarizes xUML, and Section 3 sum-

I marizes assertion-based verification. In Section 4, we define a manner to specify assertions declared

in xUML. In Section 5, we devise a manner to realize the assertion-based dynamic verification for

! xUML. In Section 6, we confirm the validity of our proposal through some experiments. In Section 7,

we discuss the applicability of our proposal to every xUML tool and differences among PSL, xPSL,

I and the assertion we defined. Section 8 concludes this paper with future work.

j 2 Executable UML (xUML)

| xUML is an extended language ofUML to be able to execute its models designed by UML diagrams.

I Therefore the system designed in xUML can be verified dynamically.

In design using xUML, the system is divided into some domains, where each domain is an aut

onomous world composed of some entities. To execute models, the required diagrams are the class

diagrams and the statechart diagrams such as Fig. 1 and 2, respectively. ClassA has an attribute attl

and an operation opl, and ClassB has two attributes attl, att2 and an operation op2. The line between

! the classes means the association, and the association has multiplicity specified on both ends of the

] line. The multiplicity are restricted to "0..1" (zero or one), "0..*" (zero or more), "1" (ex-actly one),

I or «i *» (one or more) The ciass behaves according to its statechart diagram. In the statechart dia-

| gram, each state has a procedure which is composed of action groups. Each action is a unit of a calcu-

Global Information Publisher^ 555

International Journal of Computational Science

lation process such as a loop and an access to data. The state transition occurs when an action gener

ates an event such as eventl, event2 and event3 in Fig. 2. The action is specified using the action lan

guage. The semantics of action languages conforms to UML Action Semantics [6] defined by OMG.

However there is no standard action language.

ClassA

attl

op1

1 1..*

ClassB

attl

att2

op2

Fig. 1. Example of class diagram

1.State1

entry /

Action ...

eventl

event3

2.State2

entry /

Action ... event2

Fig. 2. Example of statechart diagram

As an xUML tool, we use iUML [7] whose action language is ASL(Action Specification Lan

guage) [8]. Some examples of the action in ASL are as follows:

a. instA = find-one ClassA where attl = 1

b. instA.attl = x

c. loop

x = x * x

i = i + 1

breakif i >= 10

endloop

d. generate CAl:eventl() to instA

The action a returns instA an instance of ClassA that the value of attribute attl is 1. The action b

substitutes the value of variable x for the attribute attl of instance instA. The action c is a loop ter

minated when the value of variable i is 10 or more. The action d generates the event eventl destined

for instance instA.

3 Assertion-based Verification

Assertions are specified using some property specification language. In general, properties are speci

fied based on classical or temporal logic. There are some property specification languages as below:

- PSL (Property Specification Language) [3]

556 ♦Global Information Publisher

Design and Implementation of Executable UML Platform for Assertion-based Dynamic Verification

- OVL (Open Verification Library)

- e Temporal Language

- OVA (OpenVera Assertion)

- SVA (SystemVerilog Assertion)

Assertion-based verification reports unsatisfied properties as in error messages. It means that

the verification efficiency can be improved by easy identification of error locations.

This verification technique is divided into two types: the assertion-based static verification and

the assertion-based dynamic verification. The former, called model checking, checks every state for

assertion violations. The verification is always exhaustive in this method, however, it implies possible

state explosion. The latter one checks target codes for assertion violations in simulation. Although

its verification can be carefully arranged and executed, it can never be exhaustive.

4 Assertion Specification

4.1 Syntax

Fig. 3 shows the syntax of the assertion in BNF. We define the syntax based on PSL. In this figure,

boldface words are reserved keywords and operators. "Condition" except for "EventSpecification"

in "Component" conforms to the syntax of the conditional statement, namely, "IF" statement of ASL.

"EventSpecification" conforms to the syntax ofASL [8].

AssertJStatement ::= assert Property

Property ::= Condition

| (Property)

| Property -> Property

| Property <-> Property

| always Property

| eventually! Property

Condition ::= Component

| Component Binary.Logical-Operator Component

| ! Component

Component ::= InstanceJlandle.Attribute

| Local-Variable

| Constant

| countof { Instance_Handle_Set }

| countof Class

| Event.Specification

Binary_Logical_Operator ::= = | != | < | > | <= | >= | & | |

Fig. 3. Assertion syntax

Global Information Publisher^ 557

International Journal of Computational Science

4.2 Specification \

\
i

Now we present how and where to specify the assertions. The place to specify differs according to j

the type of assertions. \

We show the classical assertions first. Based on its property, we define that the place is in a state j

procedure of a statechart diagram. This means we checks it when the process reaches the point where]

it is described. In order to keep its readability, we additionally use the comment line which is easy J

to distinguish between the primary processes and the assertions. The next two examples show how j

to specify the classical assertions: f

- # assert this.vail > 0 & this.val2 =0 [

- # assert !x _> y \

where "#" is a comment line in ASL language. I

Next is the temporal assertion, we describe it in two files, namely "classkeyletter.ast" and "do-)

main.ast". The term "keyletter" here is the abbreviated name of the target class, and we use "ast-files"

as the term to refer to these files. The "classkeyletter.ast" file describes the assertions which relates

to the class. The "domain.ast" describe the assertions which relates to the domain. In this way, we can

specify what kind of instance is maintained in "InstanceHandle" or "Instance_Handle_Set" used in

the property of the assertions. The next two examples show how to specify temporal assertions: S

- assert always (this.flagl | !this.flag2) \

- assert eventually! this.vail = 0 j

5 Implementation

5.1 Basic Policy

As the basic policy, we use a conditional judgment to implement the function which checks each

state or whole state with the required property and generates error messages if it does not satisfy the

property. That is, we implement the function as it generates the conditional judgment from the asser

tion and then inserts the generated conditional judgment into the appropriate place in the code file.

In order to confirm feasibility of our basic policy, we construct an experimental implementation

on iUML. To generate an execution file, iUML performs "Write" processing and "Build" process

ing. As a result of "Write", we can get some files which are necessary to generate the execution file.

We call these files "Write-files". "Write-files" are the files which inform us of the class, the procedure

of the state described by ASL (al-file), and so on. On the contrary, "Build" is executed after "Write".

Based on the Write-files, "Build" generates files which are the code in the programming language

C (C-files), after that, it generates execution files from C-files. Therefore, we implement the asser

tion-based dynamic verification following Fig. 4. This implementation follows the below procedures:

558 ^Global Information Publisher

Design and Implementation of Executable UML Platform for Assertion-based Dynamic Verification

Original procedure of iUML

Model
Initialization

sequence

Write processing

Write-file inserted

conditional judgments

Write-file

Build processing

C-file | Execution file

Execute

Fig. 4. Implementation flow

1. Import the assertions from al-files and ast-files.

2. Generate conditional judgments following ASL syntax from the imported assertions.

3. Insert the generated conditional judgments into al-files.

4. Generate the execution file by "Build" processing.

To realize the above procedure, we have made a program, which is a precompiler for "Build", us

ing the programming language Ruby [9].

5.2 Classical Logic

In classical properties, the state should be checked when the execution reaches the point where the

assertion is described. Therefore we insert the conditional judgment just after the assertion.

Fig. 5 indicates an example of an assertion and the code generated from the assertion. The con

ditional judgment is shown in "Insert code", as from the second line to the sixth. The condition

sentence is basically logical negation of the property, so that the error message is generated when

the state satisfies the negation. However, if the property includes an event specification as shown

in Fig. 5, the event specification is replaced with a flag which corresponds to the event generation.

This flag is initialized to FALSE in the model initialization sequence, and also this flag is changed

to TRUE just after an action generating the event, and changed to FALSE just after the conditional

Global Information Publisher^ 559

International Journal of Computational Science

o
Assertion

1 # assert SCl:eventl k x

f Insert code

1 ef = find-only EventFlag

2 if Kef.flagl & x) then

$INLINE3

4

Generate code

fprintf(stderr, "Assertion error: \"SCl:eventi k x\" failed

at domain: %s, file: %s, line: i\n", CGEN.DOMAINNAME,

CGEN_SOURCENAME);

$ENDINLINE

endif

ef.flagl » FALSE

Fig. 5. Example of generating insert code

judgment. In addition, ASL does not support some logical operators such as logical implication "—>"

and logical equivalence "<—>". Therefore we transform them to equivalent formula: for examples

"x -> y" is transformed to "!x|y", and "x <-> y" is transformed to "(x & y) | (ix & !y)'\ where

"!", "|" and "&" indicates logical negation, logical disjunction and logical conjunction, respectively.

ASL has a facility of "in-line statements" which can be inserted into C-files as is. As ASL does

not support the print-out functionality, we use the "fprintf' function of the language C for the output of

error messages as inline statements. In Fig. 5, CGEN_DOMAINNAME and CGEN_SOURCENAME

indicates the abbreviated domain name and the ast-file name, respectively, and the name of the ast-

file indicates the class and the state. Therefore, from the error message, we can identify which do

main, class, and state do not satisfy the property.

5.3 Temporal Logic

In this subsection, we discuss simple temporal properties appending only one temporal operator to

a classical logic expression, and how to implement it.

5.3.1 Always

How can we implement the function to check the simple temporal property, "a classical logic expres

sion is always satisfied"? Fig. 6 shows an example of an assertion described in an ast-file and a code

generated from it.

In order to verify that a certain classical logic expression is always satisfied, we must check it

in every state, however we need not check it after once any state does not satisfy it. Therefore, we

use a flag initialized to TRUE, and insert a conditional judgment using it into every state. The

judgment condition is expressed as the logical conjunction of the flag and logical negation of the

560 ♦Global Information Publisher

Design and Implementation of Executable UML Platform for Assertion-based Dynamic Verification

classical logic expression. When negation of the logical expression satisfies, the flag is changed to

FALSE. In addition, when the ast-file describes an assertion about a certain class, "Code inserted

into every state" in Fig. 6 is inserted into every state of the class. On the contrary, when the ast-file

describe an assertion about a certain domain, the code is inserted into every state of every class

related to the domain.

ast-file (class_SC.ast)

1 assert always this.val != 0

4J- Generate code

*~ Code inserted into every state

1 af= find-only AssertionFlag

if af.okl & !(this.val != 0) then

$INLINE

2

3

4 fprintf(stderr, "Assertion error: V'always this.val != 0\n

(domain: SD, file: class_SC.ast, line: 1) failed at domain: %s,

file: °/,s\n", CGEN_DOMAINNAME, CGEN_SOURCENAME);

$ENDINLINE

af.okl = FALSE

endif

Fig. 6. Example of generating insert code (always operator)

5.3.2 Eventually!

Next, how can we implement the function to check the temporal property, "a classical logic ex

pression is eventually satisfied"? Fig. 7 shows an example of two code blocks generated from an

assertion which is described in an ast-file. In order to verify that a certain classical logic expres

sion is eventually satisfied, we must check it in every state. When it never satisfies the condition

from the beginning of the execution to the end of the procedure of the last transition state, we must

get an error message. Therefore we use a flag initialized to FALSE, and insert a conditional judg

ment using it into every state and the last state of the state transition. The judgment condition

inserted into the former, every state, is expressed as the logical conjunction of logical negation of

the flag and the classical logic expression. When this logical expression satisfies, the flag is changed

to TRUE. On the contrary, the conditional judgment inserted into the latter one, the last state of the

state transition, is expressed as logical negation of the flag. When this logical expression satisfies,

the error message is generated.

Global Information Publisher^ 561

International Journal of Computational Science

W

C
ast-file (classJSC.ast) :

i assert eventually! this.val «

*- Code inserted into every state

1 af = find-only AssertionFlag

2 if laf.okl & (this.val = 1) then

3 af.okl - TRUE

4 endif

•Jj- Generate code

•- Code inserted into the last state of the transition —

1 af = find-only AssertionFlag

2 if !af.okl then

3 $INLINE

4 fprintf(stderr, "Assertion error: \"eventually! this.val = 1\H

(domain: SD, file: classJSC.ast, line: 1) failed at domain: %s,

file: %s\n\ CGEN.DOMAINNAME, CGEN.SOURCENAME);

5 $ENDINLINE

6 endif

Fig. 7. Example of generating insert code (eventually! operator)

6 Experiments

In order to confirm our implementation, we constructed an oven model and a vending machine model

using iUML.

6.1 Oven Model

Fig. 8 shows the class diagram of the oven. Fig. 9 shows the statechart diagram of the ControlDe

vice class, and in this statechart diagram, we intentionally commented out one processing of state

4, which is shown in Fig. 10. This intention is to violate an assertion as mentioned below:

- # assert this.heater_on = FALSE

which is inserted in the beginning of the state 1 of the ControlDevice class sequence.

ControlDevice

{no=2, kMCD}
attributes —

lighten: Boolean

heater_on:BooJean

1 1

R1

Timer

{no=3. kl=T>

cpsfs ti c>ns

Fig. 8. Class diagram of oven model

562 ♦ Global Information Publisher

Design and Implementation of Executable UML Platform for Assertion-based Dynamic Verification

i.Open

entry /

f assert tfoia.he&terjsn ~ FALSE

this.light on - TRUE

. open_door()

4. Done

entry /

this .J-i^ht^qn j^JF&LSZ^ _

fih FJ^SS

close_doorf|
\/

open_door() startftime)

2. Close

entry /

this, light, on «* f£LS£

A

time_outO

start(time)

A
closejdoorO

5. Suspend

entry /

assert this, lighten

this.heater on ~ FALSE

open_docr()

3. Heating

entry /

this. light_on « TR\JE

this,heater on = TRUE

timer - zhla->Rl

generate XI:start(tine) to timer

power_off()

power_off()

power_off()

power_off()

6. Powersoft

entry /

■this. light_on ** FALSE

this.heater on - FALSE

power_off(}

: comment out

Fig. 9. Statechart diagram of ControlDevice class

this.heater_on = FALSE

Fig. 10. Action commented out in state 4

Fig. 11 shows the first execution result. This execution performed the state transition in order of

the states 2, 3, 4 and 1 in an instance of the ControlDevice class. In Fig. 11, an error message of

violations is reported against the above assertion. In the state 3 the value of this. heater_on is set to

TRUE, and in the state 4 it is not set to FALSE because of the intentional comennting out. There

fore in the state 1, the value of this.heater_on is TRUE and the above assertion is not satisfied.

Fig. 11. Execution result

Global Information Publisher^ 563

International Journal of Computational Science

Secondly, we executed the same, without commenting out the statement in Fig. 10, and we con

firm that it did not report the error messages. This result indicates that the above assertion is satis

fied as we expected. In the state 4 the value of this. heater_on is set to FALSE. Therefore in the state

1 the value of this.heater_on is FALSE, and the above assertion is satisfied.

6.2 Vending Machine Model

Fig. 12 shows the class diagram of the vending machine. Fig. 13 shows the statechart diagram of

the CanSlot class, and in this statechart diagram, we intentionally commented out a few process

ing of state 2 and 3, which are shown in Fig. 14 and Fig. 15, respectively. This intention is to violate

assertions as mentioned below:

a. # assert this.purchasabilityJLamp

b. assert always (this.stock=0 -> CS5:sellout)

c. assert eventually! this.purchasabilityJLamp

We inserted assertion a in the beginning of the state 3 of the CanSlot class sequence, and de

scribed assertion b, c in the ast-file of CanSlot class (classCS.ast).

Can_Slot {no=3, w=<
attributes

ID:lnteger{I=(*1»

price: Integer

stock: Integer

purchasabilityJamp: Boolean

selloutJamp:Boolean
operations

1 .* I

1 I

Money_Receiver |
{no~4, ki=MR}|

attributes }1
| operations-

R2

| Controler I
J {no-2. kNCTRL}'
11 attributes

total: Integer
operations R3

Indicator

{no=5, kl«IND}
attributes

■ op©rQtions"""""***""*"*

R4

Register I
{no~6, ki=REG} |

attributes) 1

holdlngLmoney: Integer
operations

ca!culate_change(in mon..

1..*

R5

MoneyJ3ox

-attribute

7, kl=MB} |

kindjrfjnoney: Integer {l=(*1)}
num: Integer

operations

getJdnd_ofjTioney(out kind..

get_num(out num)

Fig. 12. Class diagram of vending machine model

564 ♦ Global Information Publisher

Design and Implementation of Executable UML Platform for Assertion-based Dynamic Verification

1. Cannot_Purchase

entry /

U assort chxs.scacif > 0

this.p bi 1 ity lamp * FiU.3S

suppl/0
5. Supplement_Processing

entry /

trsp ■» -his.stock + i

,< ■,

suppfyO

receive(total)

/ \ T

Sj/ * — u
I pov/er^offO '

T7. Power^Off "]

r.bi3.p'jirch:%s>abiiir,sr .Lamp « FALSE

1 this.sellout iawp ^ FALSE J

')

lackO
V pow«r..offO j power^offO

(2. Purchasable
entry /

i»tSj.3.x;ui;chaaabiiity iaa-s -

I
rec8ive(total) j purcbasableQ

6. Judgement_Processing

entry /

xt ?«r.ai >« r,h3..r.pi:ice then

tn-D w tctai ••• this>price

[cepay-able, alO, c5G, ciCO, cr500, eiOOO] \

ix rep&v&bls » TRUS. than

geneeac •i CS2:lack{} to Uiia

generate C3£:laokO to

J

receive(toial}

J
;

power otn)
1

suppiyQ

^4. Sellout

;? assort; this.stock - 0

thias.s&iiout^lawp •■« TRUS

/

power_offQ

r3. Purchase_Processlng
eatcy /

H t%»f^±x*v tli^^«Di.tK'ivh'^i<^it«. 1 £ ty X^iwp

t;»r.p - tiiis.scoc)-: ••• 1

•rt.x:i » ';hi»-?St

!f
atocic " " the" "" """""■ ""|

rar-ff CJ3S:.?*}.lout<? to thi«|

1: comment out

Fig. 13. Statechart diagram of CanSlot class

this.purchasability^lamp = TRUE

Fig. 14. Action commented out in state 2

if this.stock = 0 then

generate CS5:sellout() to this

endif

Fig. 15. Action commented out in state 3

Fig. 16 shows the first execution result. This execution performed the state transition in order of

the states 1, 6, 2, 3 and 7 in an instance of the Can_Slot class. A, B and C are the error messages of

violations against above assertion a, b and c, respectively. In the state 1 the value of this.purchas-

ability_lamp is set to FALSE, and in the state 2 it is not set to TRUE because of the intentional

comennting out. Therefore in the state 3, the value of this.purchasabilityJLamp is FALSE and

the assertion a is not satisfied. In the state 3, although the value of this.stock is 0, the event

CS5: sellout is not generated becouse of the intentional comennting out. Therefore in the state 3

the assertion b is not satisfied. In every state the value of this .purchasability_lamp is never set to

TRUE because of the intentional comennting out in the state 2. Therefore the assertion c is not satis

fied.

Global Information Publisher^ 565

International Journal of Computational Science

Secondly, we executed the same, without commenting out the statement in Fig. 14, and we con

firm that it did not report the error messages (A and C). This result indicates that the assertion a and c

satisfied its property as we expected. In the state 2 the value of this.purchasability_lamp is TRUE,

and the assertion c is satisfied. In addition, in the state 3 the value of this.purchasability_lamp is

TRUE, and the assertion a is satisfied.

In the same way, we executed the same, without commenting out the statement in Fig. 15, and

we confirmed that the error message B was not reported. This result indicates that the assertion b

is satisfied as we expected. In the state 3 the value of this.stock is 0, and the event CS5:sellout is

generated. Therefore the assertion b is satisfied.

Based on these results, we confirmed our implementation is appropriate.

Fig. 16. Execution result

7 Discussions

We used iUML in the above experiments. Our assertion-based dynamic verification in xUML gener

ates the conditional judgments of ASL from the assertions, and inserts them in some files describ

ing the state procedures by ASL. iUML generates C-files to execute, and we implemented our ap

proach in the language C. This means it is possible to apply our approach to another xUML tool if

the tool generates codes written in any concrete programming language to execute. In fact, any tool is

considered generating files of program codes to execute in some programming language. Hence, we

conclude that our proposal is applicable to any other xUML tool as well.

Next, we discuss differences among PSL, xPSL, and the assertions we defined. PSL focuses on

hardware description language (HDL), and supports various temporal operations. xPSL is an ex

tended language to PSL to support declarations of variables, events, and so on. xPSL focuses on

both xUML and HDL. On the contrary, our assertion focuses on xUML only, especially iUML.

8 Conclusions

In order to realize the assertion-based dynamic verification for xUML, we proposed a specification of

assertions and implementation of the property checking, and confirmed the validity of our proposal

through some experiments on the classical logic and the simple temporal logic.

566 ♦ Global Information Publisher

Design and Implementation of Executable UML Platform for Assertion-based Dynamic Verification

The extension for more complicated temporal properties are left as our future work.

Acknowledgments

This research was supported in part by Joint Research Project with Nippon Signal Co. Ltd. The

authors are grateful to Ms. Nurul Azma Zakaria for her valuable contribution.

References

1. Stephen J. Mellor, Marc J. Balcer: Executable UML: A Foundationfor Model-Driven Architecture, Addi-

son-Wesley. (2002)

2. Harry D. Foster, Adam C. Krolnik, David J. Lacey: Assertion-Based Design, Kluwer Academic. (2003)

3. Harry Foster, Erich Marschner, et al.: Property Specification Language Reference Manual Ver. 1.1, http://

www.eda.org/ieee-1850/.

4. Masahito Sugai, Akira Teruya, Eiichiro Iwata, Nurul Azma Zakaria, Noriko Matsumoto, Norihiko Yo-

shida: Assertion-based Dynamic Verification for Executable UML Specifications, Proc. 8th Int. Conf. on

| Applied Computer Science (2008) 181-186.

I 5. Fei Xie, Huaiyu Liu: Unified Property Specification for Hardware/Software Co-Verification, Proc. 31st

j Annual International Computer Software and Applications Conf. 1 (2007) 483-490.

\ 6. UML Action Semantics: http://www.omg.org/cgi-bin/doc7ptc/02-01-09.

7. iUML: http://www.kc.com/products/iuml.php.

8. Ian Wilkie, Adrian King, Mike Clarke, et al.: UML ASL Reference Guide, http://www.kc.com/download/

I index.php.

| 9. David Thomas, Andrew Hunt: Programming Ruby, Addison-Wesley. (2000)

Global Information Publisher^ 567

