
Dynamic Load Balancing in Skip Graph

TAKESHI MORIAI
Saitama University

Department of Computer Science
Saitama 338-8570

JAPAN
mt@g.yolab.jp

ANDRII ZHYGMANOVSKYI
Saitama University

Department of Computer Science
Saitama 338-8570

JAPAN
andrew@g.yolab.jp

NORIKO MATSUMOTO
Saitama University

Department of Computer Science
Saitama 338-8570

JAPAN
mats@g.yolab.jp

NORIHIKO YOSHIDA
Saitama University

Department of Computer Science
Saitama 338-8570

JAPAN
yo@g.yolab.jp

Abstract: In this paper, we propose a Skip Graph adapting to the increase or decrease of contents. Skip Graph is
one form of P2P networks that can perform flexible content search efficiently. However, it has no mechanism to
cope with overload to a peer when the amount of its contents overwhelms. Meanwhile, there is another form of P2P
networks named P-Ring. It has also a mechanism for flexible content search as well as dynamic load balancing.
Therefore, we propose applying a dynamic load balancing method inspired from P-Ring to Skip Graph. In our pro-
posed method, the network of Skip Graph is dynamically reorganized, and the contents are dynamically transferred
among peers according to the increase or decrease of contents in a peer. We also present some simulation-based
experiments to confirm the usefulness and efficiency of our proposed method.

Key–Words:Peer-to-peer, Load-balancing

1 Introduction

A P2P (peer to peer) network is attracting much at-
tention as a distributed contents-sharing system. A
client-server system is the most pervasive structure
because of its simple construction and management
on its centralized server. However, the server can be a
single point of failure, so that decentralized contents-
sharing, namely P2P, has been studied actively from
the point of view of availability and load balancing.
In a P2P network, each peer has roles both as a server
and a client, and each content is maintained on a dif-
ferent peer, therefore P2P can work even if some of
peers disappear. A large number of efficient meth-
ods for P2P content queries have been proposed, es-
pecially range search is one of the fascinating topic.

Skip Graph [1] is one of the effective methods to
achieve the range search. This method is an over-
lay network application of Skip List [2] which is a
data structure for efficient data access. This approach
has advantages that it can perform the range search
and achieves join/leaving operations at small costs.
However, as the number of contents increases, some
particular peers may get overwhelmed by high load.

In order to address this issue, we propose a scalable
dynamic load balancing method for Skip Graph, and
show the efficiency through some simulation experi-
ments.

In the rest of this paper, we show some related
works and P2P networks in Section 2, and we explain
the purpose of our study in Section 3. Then, we make
a detailed description of our proposed method in Sec-
tion 4. Finally, we present some simulation-based ex-
periments and their results to confirm the usefulness
of the proposed method in Section 5.

2 Related Works
P2P networks is roughly classified into unstructured
P2P networks and structured P2P networks. For ex-
ample, Gnutella [4] and Freenet [5] are in the former.
they are easy to construct, however they have a draw-
back that search messages are overflowed, because
they spread query packets in a way of bucket brigade,
called Flooding. On the other hand, Chord [6], CAN
[7], Kademlia [8], Tapestry [9] and Pastry [10], for
example, are in the latter. They use DHT (Distributed
Hash Table) in both phase of network construction

and search. This approach can search efficiently using
hash tables, although there are two problems. Firstly,
each peer cannot perform flexible search. Secondly,
management of networks incurs a large cost in gen-
eral, and it is very difficult to construct a network.

Consequently, some attempts to enable range
search without using hash tables have been studied
actively. Skip Graph is one of the most acknowl-
edged methods. This approach can access the target
contents using range search without hash tables effi-
ciently, and makes nodes to join or leave from a net-
work at a small cost. However, Skip Graph has an is-
sue that the load balancing is out of concern when the
number of contents are increased. Meanwhile, there
is another proposal named P-Ring [3], which can per-
form range search on P2P overlay networks and re-
alize dynamic load balancing using content transfer
similar to B+tree. Therefore, we aim to address the
issue of Skip Graph using the technique of P-Ring.

2.1 Skip Graph

2.1.1 Structure

Figure 1 shows a schematic diagram of Skip Graph.
Skip Graph is an overlay network based on Skip List
over a P2P network to perform range search. Each
peer in the Skip Graph are arranged based on the key
order. Here, the keys are comparable value that are
assigned to identify themselves uniquely. And each
peer has mutual links with peers before it and after it.
Here, these peers are called the left peer and right peer,
respectively. A peer is given a random integer value
in the binary representation which is called a mem-
bership vector, and each peer maintains some links at
multiple levels based on the matching of membership
vector prefix. Namely, linked list at each level con-
tains all the peers which have the matching member-
ship vector prefix.

A Peer in Skip Graph is one-to-one correspon-
dence to key in principle. Multi-Key Skip Graph [11]
is proposed in order to solve the problem. In this
method, peers with same membership vector are con-
sidered as a peer. As a result, a physical peer can have
multiple key. However in this paper, we will proceed
to the discussion with assuming that a physical peer
can have consecutive multiple key.

Skip Graph has been attracted attention in recent
years. For example, The Rainbow Skip Graph [12]
and Skip B-Trees [13] are proposed. These methods
are focused search improvement.

2.1.2 Join and Leave Operation

A new peer knows some introducing peer in the net-
work that will help it to join the network. The new
peer makes linked lists based on membership vector
at each level and inserts itself in one linked list at each
level till it finds itself in a singleton list at the topmost
level.

When a peer wants to leave the network, it in-
forms its left peer at each level to update its right peer
pointer to point the peer’s right peer. It starts at the
topmost level and works its way down to level 0.

As described above, peers in Skip Graph notify
only to left peer and right peer when a peer performs
join operation or leave operation. Therefore, Message
cost of join or leave operation in Skip Graph is rela-
tively small.

membership
vector

28 40 63 77

0010 1101

Level 0

6328

40 77
Level 1

28 40 77Level 2 63

Figure 1: Skip Graph

2.2 P-Ring

A P-Ring network is formed in a circle. Some peers
are included in the network, each of which has con-
tents in a certain range respectively, while the other
peers are not, which are called helper peers. A new-
comer peer joins the network as a helper peer. There
are a lower bound and an upper bound for the number
of contents in each peer. The upper bound is set twice
as the lower bound. When the number of the con-
tents exceeds the upper bound, the peer splits its set
of contents and corresponding range, and gives a half
to a helper peer. After that, the peer invites the helper
peer to join the ring as its right peer. When the num-
ber of the contents gets lower than the lower bound,
right peer checks whether a redistribution of contents
is possible between the peer and itself. If yes, right
peer gives some of its contents and the corresponding
range to the peer. If redistribution is not possible, right
peer gives up its all contents and its range to the peer,
and becomes a helper peer. P-Ring does dynamic load
balancing in this manner.

For efficient search for contents in P-Ring, each
peer has routing table. To create a routing table, they
use an tunable valued in P-Ring. At the lowest level
in routing table, level 1, each peer maintains a list of
thed successors on the ring, skipping up tod - 1 peers
at a time. At level 2, we again maintain a list of d suc-
cessors. However, a successor at level 2 corresponds
to thed th successor at level 1, skipping up tod2 - 1
peers at a time. Namely At levell, a peer has link to
peers that aredl peers away.

However, each peer in P-Ring needs to update
own routing table when a peer joins or leaves. There-
fore, there is a problem that message cost by update is
great.

3 Load Balancing

A P2P network can distribute the network load to each
peer. However, if a single peer has a huge number
the contents, the load is concentrated to this peer, and
the advantages of the P2P network is lost. Therefore,
dynamic load balancing following the transition of the
network load is important.

Most studies on Skip Graph focuses on search im-
provement, however almost none has been done on
load balancing because there is an assumption that a
peer and a content has one-to-one correspondence. In
real deployments, this assumption can not be held, and
a peer may have several contents.

Consequently, we have an idea of applying the
dynamic load balancing technique in P-Ring to Skip
Graph.

4 Proposed Method

For dynamic load balancing in Skip Graph, we intro-
duce the dynamic load balancing technique in P-Ring.
The first is the helper peers. A newcomer does not
join to the network as in the original Skip Graph, but
is included as a helper peer.

The second is the split and merge operations. We
introduce an upper limit and a lower limit to the num-
ber of contents in a peer. In this paper, the upper limit
is double of the lower. If the number of contents ex-
ceeds the upper limit, the peer splits the contents in
cooperation with a helper peer. If the number of con-
tents gets less than the lower limit, the peer merges the
contents in cooperation with its left neighbor peer.

Transfer of contents between peers is not taken
into account in the original Skip Graph.

We can perform the split and merge operations in
a Skip Graph without destructing its key order prop-
erty. A receiver peer finds the smallest key in the re-

ceived contents, and sets it as its own key. Below, their
details are presented.

4.1 Split Operation

If the number of contents in a peer exceeds the up-
per limit, the peer performs the split operation to dis-
tribute its load. Figure 2 shows a Skip Graph with
helper peers, in which the upper and lower limits for
peers are 2 and 4, respectively.

The Figure3 shows an example of the split oper-
ation when the content 64 is added to 2. The peer
which originally has a key of 63 transfers the second
half of its contents to any helper peer. The helper peer
which receives the contents performs the join opera-
tion to the Skip Graph, assigning the minimum key in
the contents as its own key (In this case, 66).

membership
vector

28 40 63 77

0010 1101

Level 0

6328

40 77
Level 1

28 40 77Level 2 63

Contents

Helper Peer

28 31 40 54 77 816335 65 66 70

Figure 2: Skip Graph with helper peers.

membership
vector

28 40 63 77

0010 1101

Level 0

6328

40 77
Level 1

28

40

77
Level 2

63

Contents

Helper Peer

28 31 40 54 77 816335 64 66 70

66

66

66

01

65

Figure 3: Split operation.

4.2 Merge Operation

If the number of contents in a peer becomes less than
the lower limit, the peer performs the merge operation.
There are two cases according to the sum of the num-
bers of contents in the peer and in the left neighbor
peer.

(a) If the sum is less than the upper limit
The peer transfers all of its contents to the left
peer. Then it leaves from the Skip Graph per-
forming the original leave operation, and be-
comes a helper peer.

Figure 4 shows an example of the merge oper-
ation when content 40 is removed from Figure
2. The sum number of contents in the left peer
(its key is 28) and the peer (its key is 40) are 4,
which is below the upper limit. Therefore, the
peer transfers all the contents to the left peer.

membership
vector

28 63 77

0010 11

Level 0

6328 77Level 1

28 77Level 2 63

Contents

Helper Peer

28 31 54 77 816335 65 66 70

Figure 4: Merge operation (the case 1).

(b) If the sum is more than the upper limit
The left peer performs the split operation first.
The peer receives the second half of the contents
from the left peer, and sets the smallest key in the
received contents as its own key.

Figure 5 shows an example of the merge opera-
tion when the content 81 is removed from Fig-
ure 4. The sum numbers of contents in the left
peer (its key is 63) and the peer (its key is 77) is
5, which exceeds the upper limit. Therefore, the
left peer performs the split operation, and trans-
fers the second half of its contents to the peer.
The peer sets its key to 66.

membership
vector

28 63 66

0010 11

Level 0

6328 66Level 1

28 66Level 2 63

Contents

Helper Peer

28 31 54 776335 65 66 70

Figure 5: Merge operation (the case 2).

5 Experimental Evaluation
We conducted experiments using a simulator in order
to confirm the usefulness of the proposed method. We
present the details and results of the experiments be-
low.

5.1 Experiments in detail

We measure some standard deviations of the number
of contents on each peer along with the increase of
contents, and compare them with the ones on the orig-
inal Skip Graph. This is to measure the effect of dy-
namic load balancing. In addition, we compare the
network traffic, to measure the cost of load balancing.

As the networks become different each time ac-
cording to the set of contents to add and its order, we
take an average of several simulations. The number
of peers is c.a. 10,000, and the number of contents is
75,000, 150,000, 225,000, and 300,000. We do sim-
ulations 10 times for each of the four cases, and get
their averages. The lower bound of the number of
contents in a peer is 5, 10, 15, and 20 in each case.
A content has a unique and random key, and is added
to the network at some fixed interval.

We conducted two cases, namely addition only,
and addition and removal. In the latter, contents are
added or removed at a fixed interval. The probability
of addition is 0.8, and removal is 0.2. The lower bound
for the number of contents in a peer is 10.

5.2 Results

Figure 6 shows the comparison of standard deviations
between the original Skip Graph without load balanc-
ing, and the network with load balancing following

our proposal. Standard deviations of peer loads are
almost one-fourth in our proposed method compared
to the original Skip Graph. Figure 7 shows the com-
parison of the total numbers of network messages be-
tween them. In the original Skip Graph, the standard
deviation is significantly increased as the contents are
added. On the contrary, the standard deviation in our
proposed network is suppressed. From Figure 7, we
see that the network traffic in our network is greater
than the original Skip Graph, However, this overhead
is negligible.

From these results, we see that our proposed
method achieves dynamic load balancing efficiently
as compared to the original Skip Graph. Although the
network traffic is slightly increased, we can conclude
that our proposed method is efficient in dynamic load
balancing.

 0

 5

 10

 15

 20

 25

 30

75000 150000 225000 300000

st
an

da
rd

 d
ev

ia
tio

n

number of contents

Proposed Method
SkipGraph

Figure 6: Comparison of standard deviations.

 700000

 800000

 900000

 1e+006

 1.1e+006

 1.2e+006

 1.3e+006

75000 150000 225000 300000

nu
m

be
r

of
 m

es
sa

ge
s

number of contents

Proposed Method
SkipGraph

Figure 7: Comparison of the numbers of packets.

Figure 8 shows the transition of the standard de-
viations in the cases of addition only, and Figure 9
shows the transition of the standard deviations in the
cases of addition and removal.

In both the cases, the standard deviations vary sig-
nificantly at the initial stage because the number of
peers is small. However, they get reduced and gradu-
ally stable afterward due to the effect of dynamic load
balancing.

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 0 1000 2000 3000 4000 5000

st
an

da
rd

 d
ev

ia
tio

n
time

Proposed Method

Figure 8: Standard deviation of addition only.

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 0 1000 2000 3000 4000 5000

st
an

da
rd

 d
ev

ia
tio

n

time

Proposed Method

Figure 9: Standard deviation of addition and removal.

6 Conclusion

We proposed a method for dynamic load balancing in
Skip Graph by moving contents between peers and
by peer joining/leaving in response to the increase
or decrease of contents in the network. In order to
confirm usefulness of the proposed method, we per-
formed simulations to measure the changes in vari-
ability of the number of contents along with adding
or removing contents at random to Skip Graph. Stan-
dard deviations of peer loads are almost one-fourth in
our proposed method compared to the original Skip
Graph. From the results, we confirmed that the pro-
posed method is effective.

Load on a P2P network does not depend solely
on the number of content. It is affected by the popu-
larities of contents as well. Therefore, we must con-
sider the popularities of contents for more sophisti-
cated load balancing. This issue will be addressed in
the future.

References:

[1] J.Aspnes, G.Shah, “Skip Graphs”, ACM Trans.
on Algorithms(TALG) Volume 3 Issue 4,
November 2007 Article No.37

[2] Pugh, William (June 1990), “Skip lists : a prob-
abilistic alternative to balanced trees”, Commu-
nications of the ACM 33 : 668-676

[3] A.Crainiceanu, P.Linda, A.Machanavajjhala,
J.Gehrke, J.Shanmugasundaram, “P-Ring : An
Efficient and Robust P2P Range Index Struc-
ture”, Proc. ACM SIGMOD Conf. 2007:223-
234, 2007

[4] Gnutella. http://gnutella.wego.com/.

[5] I.Clarke, O.Sandberg, B.Wiley, and T.W.Hong.
“Freenet : A Distributed Anonymous Informa-
tion Storage and Retrieval System. ” In Work-
shop on Design Issues in Anonymity and Un-
observability, pages 311-320, July 2000. ICSI,
Berkeley, CA, USA.

[6] I.Stoica, R.Morris, D.Karger, F.Kaashoek, and
H.Balakrishnan,“Chord : A scalable PeerToPeer
lookup service for internet applications”, in
Proceedings of the ACM SIGCOMM, 2001,
pp.149-160.

[7] S.Ratnasamy, P.Francis, M.Handley, R.Karp,
and S.Shenker. “A Scalable Content-
Addressable Network”, In Proc. of the ACM
SIGCOMM 2001 Conference, August 2001.

[8] P.Maymounkov and D.Mazieres. “Kademlia : A
Peer-to-peer Information System Based on the
XOR Metric. ” In Proceedings of the First In-
ternational Workshop on Peer-to- Peer Systems
(IPTPS’02), MIT, March 2002.

[9] B.Zhao, J.Kubiatowicz,and A.Joseph, “Tapestry
: An infrastructure for fault-tolerant wide-area
location and routing”, University of California at
Berkeley, Computer Science Department, Tech.
Rep. UCB/CSD011141, 2001.

[10] P.Druschel and A.Rowstron, “Pastry : Scal-
able, distributed object location and routing for
large-scale peer-to-peer systems”, in Proc. of
the 18th IFIP/ACM International Conference
on Distributed Systems Platforms(Middleware
2001), Nov. 2001.

[11] Y. Konishi, M. Yoshida, Y. Teranishi, K. Haru-
moto, and S. Shimojo, “A Proposal of a Multi-
key Extension of Skip Graph”, IPSJ SIG Notes,
Vol. 2007 No. 58, pp.25-30, June 2007

[12] M. T. Goodrich, M. J. Nelson, and J. Z. Sun.
“The Rainbow Skip Graph : A Fault-Tolerant
Constant-Degree Distributed Data Structure”,
SODA’06, 2006

[13] I.Abraham, J.Aspens, J.Yuan, “Skip B-Trees ”,
Principles of Ditributed Systems; 9th Interna-
tional Conference, OPODIS 2005; Pisa, Italy;
December 2005; Revised Selected Papers, De-
cember 2005, pp. 366-380.

