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Abstract—In this paper, we present an approach to
building cloud bursting architecture based on the peer-
to-peer infrastructure for managing services. Proposed
approach is designed to address various issues of intercon-
necting several clouds, problems of resource provisioning,
service deployment and provisioning in the hybrid cloud.
To ensure robustness of our system we use peer-to-peer
overlay, which was proposed by us in previous papers.
Scalability of the approach is attained due to flexibility of
service discovery mechanism, decentralized architecture
and modular approach, which allows to leverage existing
components. We argue that our approach present viable
solution for managing abrupt peaks in the load and
keeping service provider’s QoS and SLA requirements on
the desired level.
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I. INTRODUCTION

Cloud computing emerged as a novel approach al-

lowing anyone to quickly provision a large scale IT

infrastructure that can be completely customized to

user needs on a pay-per-use basis. Recently, there is

an increasing research effort concerning concomitant

use of two or more cloud services to minimize the

risk of widespread data loss or downtime due to a

failure in a cloud computing environment. Although the

terminology might not be fixed yet due to the novelty of

the research domain, most researchers tend to use the

term intercloud computing which is formally defined

as “a cloud model that, for the purpose of guaranteeing

service quality, such as the performance and availability

of each service, allows on-demand reassignment of

resources and transfer of workload through the network

of cloud systems of different cloud providers based

on coordination of each consumers requirements for

service quality with each providers SLA and use of

standard interfaces“ [1]. This model, in turn, can be

subdivided into two more specific categories — cloud
federation and multicloud — according to the kind of

interaction between cloud providers. Composition of

two or more different cloud infrastructures (for example,

a private and a public cloud) falls into separate category

called hybrid cloud. The most common scenario, when

such infrastructure emerges, is the the usage of external

cloud resources when local ones are insufficient, which

is called cloud bursting — an approach that is drawing

more attention each year. However, due to being an

inherently distributed system, cloud bursting potential

becomes limited when such vital tasks as resource

management and allocation, service provisioning and

life cycle management are implemented in a centralized

way, usually utilizing some kind of brokering architec-

ture, which introduces multiple issues, such as emerging

of single point of failure, performance bottlenecks,

network congestion and synchronizing problems. This

leads to the need of making at least part of the cloud

bursting solution decentralized, therefore increasing its

robustness, scalability and fault tolerance. Considering

our previous efforts in applying peer-to-peer based ap-

proach to the problem of service sharing and discovery

[2], we decided to investigate its possible applications

within the intercloud research domain.

Principal contributions of this paper include a) a pro-

posal for cloud bursting architecture that facilitates de-

centralized management of cloud resources and provides

end-users with fault-tolerant and reliable services in

large, autonomous, and highly dynamic environments;

b) application of previously proposed service sharing

and discovery approach based on peer-to-peer overlay

to streamline the execution of single jobs and entire

workflows in the cloud; and c) introducing a modular

framework for composing cloud bursting solutions, al-

lowing adoption of various standards and tools.

The rest of the paper is organized as follows. Sec-

tion II describes research background and outlines re-

lated work. Section III presents proposed architecture

for decentralized cloud bursting and describes the pro-

cess of service provisioning. Considerations and met-

rics for framework evaluation as well as our vision

regarding comparative analysis with other intercloud

and cloud bursting systems are presented in Section IV.

Conclusions and further research directions are given in
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Section V.

II. RESEARCH BACKGROUND AND RELATED WORK

Wide adoption and growing reliance on cloud tech-

nology are among the main reasons for situations where

one cloud (or cloud provider) becomes not enough.

Such cases include a) outages within cloud provider

premises; b) insufficient geographical distribution of

cloud provider resources; c) added complexity of mi-

grating the infrastructure from one cloud provider to

another, and as a result, d) the possibility of vendor

lock-in. Yet, the biggest problem that emerge from using

single cloud provider is the limits in scalability, which

most often manifests itself in form of poor handling of

abrupt fluctuations in the load, when permanent scaling

out is not economically reasonable, and at the same time

peaks in the load must be handled as prompt as possible.

Flash crowds can be named as a prominent example.

Thus, proposed architecture is designed to deal with

the following problems: a) general approach to intercon-

necting several clouds; b) resource provisioning in the

hybrid cloud; c) service deployment and provisioning

in the hybrid cloud. Virtually all the solutions that we

are aware of introduce certain centralized component

that play the role of a broker, which usually combine

multiple responsibilities, such as a) acting a marketplace

where clouds can sell or advertise resources [1]; b) map-

ping user requests to cloud resources [3]; c) maintains

the registry of collaborating clouds’ services [4], etc.

We argue that existence of such component makes the

system vulnerable to all kind of intrinsic failures to

which centralized systems are susceptible to, as already

described in the introduction.

Current intercloud research efforts can be considered

still on its early stage and include Contrail [3], mOSAIC

[5], OPTIMIS [6] and RESERVOIR [7]. More detailed

analysis of intercloud frameworks can be found in [1].

As for cloud bursting research, the results here are

sparse and include an architecture described in [8],

investigation about decision support model for cloud

bursting in [9], and reference design for cloud bursting

with special attention to the problems of trust and

security in [10].

III. PROPOSED MODEL

At the beginning of the description of our model,

we provide details about participating entities. In case

of cloud bursting scenario, they usually include service
provider (SP), which provides one or several services,

which it operates on premises using private cloud, and

cloud provider (CP), which is a company that offers a

cloud computing solution in the form of IaaS, PaaS or

SaaS (or any combination thereof) to other businesses

or individuals. Cloud bursting scenario typically involve

several CPs, either on the evaluation stage, during which

SP choose the CP it would use for cloud bursting, or

during actual multicloud stage if SP uses several public

clouds. Chosen CP is called cloud bursting target. In

our case, scenario also includes another role, called

client, which represents an entity that has some work to

perform in the cloud (either in the form of the workflow

instance or a single job request). While client in general

might be a separate entity, in most scenarios SP acts in

this role. Lastly, we will call a request from the client

a job request from now on, but it should be noted that

this definition differs from the similar terminology that

exists in Grid systems.

A. Service descriptions and service queries

Services provided by SP are described using (a, v)-
graph notation, introduced in [2]. We call the resulting

(a, v)-graph a service (a, v)-graph, or simply S-(a, v)-
graph. Next, each virtual machine instance in the cloud

is characterized by its own (a, v)-graph based descrip-

tion, which includes hardware characteristics such as

CPU information, maximum available memory, maxi-

mum available hard disk space, operating system type

and version, available licenses and installed certificates,

etc. This graph is built similarly to the S-(a, v)-graph

and is called instance (a, v)-graph, or simply I-(a, v)-
graph. Virtual machine instances leased from the ex-

ternal CP add more (a, v)-pairs to the descriptions

of the services they host. Those (a, v)-pairs contain

information such as maximum lease time, lease slot

duration or resource price, and form so called leased
resource (a, v)-graph or simply L-(a, v)-graph. Finally,

service, instance and leased resource (a, v)-graphs are

merged into one graph called full-(a, v)-graph, which

is stored at the overlay node. Similarly to the original

paper, full-(a, v)-graph contains the node that holds

low-level routing information about the instance.

Job request is a crucial part of cloud bursting ap-

proach, since it acts as the mechanism which determines

the status of the internal cloud and verifies to what

degree provisioned services fulfill the established ser-

vice level agreement and other auxiliary requirements.

In case the job that is being submitted to the cloud

cannot be executed with only internal resources, leas-

ing additional resources from external cloud must be

performed. In our model we construct such mechanism

using the set of service queries Q = {Q1, Q2, . . . , Qs}
that formally describe each job request J and return the

set of available service instances I that are provided

by either SP or one of the CPs that currently act as a
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cloud bursting target. The service query is expressed in

a format introduced in [2].

The node, which handles the query, is called broker-
ing node. Detailed description of query processing also

may be found in [2]. Apart from service properties,

query can include special terms, called provisioning
policy terms, which help regulate the rate and scale

of overlay growth. Examples of these terms are cost

restricting terms and queue wait time.

B. Overlay formation and scaling

Next, we describe the procedure of forming a peer-

to-peer overlay which is the pivotal element in the

proposed architecture. It is formed with cloud virtual

machine instances as nodes, each of which has at least

one service deployed, however some services may be

deployed on several instances as well, depending on the

capabilities they require and estimated initial demand.

We consider it reasonable to assume that services of

SP form an overlay network of considerably large

amount of nodes, since if the opposite were true SP

most probably would not need to resort to building

cloud bursting solution. The form and the scale of the

overlay is defined by the combination of the following

scenarios:

1) Initial configuration scenario: Starting point of

building cloud bursting architecture. Here SP first

deploys its services into own private cloud with

minimum needed amount of instances for each

service, therefore establishing sufficient infras-

tructure for executing necessary jobs at the mo-

ment.

2) Vertical scaling scenario: This scenario consists

of expanding or contracting (increasing or de-

creasing the number of instances) within the

bounds of the SP private cloud and does not incur

extra-corporate expenses.

3) Horizontal scaling scenario: This scenario rep-

resent the actual cloud bursting process: tem-

porary leasing virtual machine instances from

cloud bursting target and eventual contracting to

the original state of having only private cloud

instances. Choosing one or several CPs that will

act as a cloud bursting target is also performed

here, but can be seen as optional, because in the

real-word scenario SP will not perform full CP

selection process each time the horizontal scaling

occurs.

By utilizing peer-to-peer overlay, we achieve certain

level of homogeneity, which allows us to abstract from

actual nature of scaling scenario (whether it is vertical

or horizontal), since in both cases new virtual machine

instances are represented as overlay nodes with cor-

responding service descriptions that are linked to the

actual instance routing information. Given this model,

each job request will result in one of the following

situations:

1) Requested service is available and job request

satisfies restrictions introduced by resource pro-

visioning policies.

2) SP infrastructure lacks either power (expressed

in CPU, memory etc) or capabilities (expressed

in operating system kind, software, license, pro-

tocols support, certification etc). In this case

brokering node can put the request in the job

request queue (performing periodical re-querying)

or scaling can be performed, resulting in increased

amount of instances and/or adding required capa-

bilities.

C. Platform components

In this subsection we describe the components which

compose proposed solution. Due to modular approach to

designing and implementing the solution, components

are loosely coupled, allowing replacing or refactoring

them if needed. This approach also makes possible using

a wide range of third-party solutions for queues or

databases. We argue that proposed solution decentralizes

most components, that usually appear centralized in

other publications related to cloud bursting or multi-

cloud organization, as shown in Table I.

Table I
COMPONENTS DECENTRALIZED IN PROPOSED MODEL.

Component Examples
Resource
pool

FCM Repository [11], Cloud Computing Re-
source Catalogue [12]

Service
request
processor

Federation Runtime Manager [3], Generic Meta-
Broker Service [11], Resource Broker [5]

Resource pro-
visioner

Cloud Broker [11], Cloud Optimizer [6], Client
Interface [5]

Multicloud
broker

Primary Cloud Provider [4], Cloud Coordinator
[13], Intercloud Exchange [12]

The components that are used in the proposed model

are as follows. Dependencies between components are

shown in the Figure 1.

Job request processor: Gateway component which

accepts a job request from a client. The job request

is put into the job request queue, and then a service

query is formed and sent to the service query processor,

which returns the result together with further action.

Depending on this action, job request processor either
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Figure 1. Model components.

contacts provisioning manager and eventually return

available instance(s) information to the client or repeats

service query later. When job is finished, its results (if

they are present) are returned to the client. In many

cases, clients may receive not the actual result value,

but a set of pointers to the component where the result

data is stored.

Service query processor: Component which is re-

sponsible for processing the service query, which was

formed by job request processor based on the job

request from a client. Since service query processing

itself is a multi-stage process, the component performs

the following functions:

• Accepts service query and puts it to the service

query queue.

• Processes the query according to procedure de-

scribed in [2].

• After getting the query result, returns it to the

job request processor along with the action that

is supposed to be taken (such possible actions are

described in detail in Subsection III-B).

Since proposed solution is distributed, any overlay

node can act as job request processor and service query

processor for the incoming query. In practice, actual

node is chosen using round-robin algorithm in order

to distribute the load and eliminate unnecessary large

request queues. Furthermore, while the architecture ac-

tually does not prescribe that those two components

must be located at the same overlay node, it seems

reasonable to do so for given job request and service

queries associated with it in order to decrease network

traffic and improve reliability.

Job request queue: Component which holds job

requests with their respective service queries being

processed or scheduled to do so. Physically, the queue

is organized as a distributed queue where master node

corresponds to the overlay node that acted as job request

processor, and several other nodes in the overlay act like

a slave nodes with duplicate queue instances.

Service query queue: Component which holds ser-

vice queries which are currently being processed. This

queue can be organized in a distributed way similar

to job request queue, but in reality due to reliability

concerns it is coupled with service request processor

and located at the same node.

Provisioning manager: Component which is respon-

sible for provisioning of resources in case the current

ones are not sufficient to process a job request. It is con-

tacted by job request processor in case service request

result indicated that new instances must be created for

given job request. On this stage, provisioning manager

becomes the point from where cloud bursting process

starts in case local resources are not enough. First, it

contacts cloud bursting target searcher component to

obtain the information about most suitable cloud burst-

ing target. Having established the target, provisioning

manager sends the request to external authentication

manager, which provide necessary credentials and other

authentication data needed to start provisioning pro-

cess from external cloud. It uses appropriate adapter

components to interact with external CP, obtain routing

information for leased resources and return it to job

request processor.

Resource pool: Since most cloud providers offer

billing plans based on fixed time blocks (e.g. X dollars

for Y hours of uptime), it is reasonable to maintain a
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pool of resources that once was leased from CP with

job that requested them is finished but the dedicated

time slot is not over yet, so they can be reused. In

contrast to most centralized solutions, this pool does

not exist as a standalone component — the nodes

just remain as the part of the overlay with respective

services deployed. Nodes are removed from the pool

(and therefore from the overlay) based on their L-(a, v)-
graph information. Releasing these resources can be

managed in the distributed way when overlay nodes

check their neighbors and send corresponding ”release”

message to provisioning manager.

External authentication manager: Component

which stores and manages various authentication infor-

mation (credentials, authentication tokens, security cer-

tificates, etc.), that are necessary to successfully perform

resource leasing from external CP. This component is

contacted by provisioning manager during cloud burst-

ing phase. This component uses adapter components for

interacting with external CP.

Cloud bursting target searcher: Component which

provides information about cloud bursting target when

horizontal scaling is performed. Possible cloud bursting

targets are first listed in the initial configuration of the

component in the order of preference. This configuration

is created based on open and available data about

CPs, which include pricing plans, available geographical

locations, supported platforms and services, etc. In ad-

dition, data from cloud monitoring system component is

used to change this initial preferences order. The design

of proposed solution also allows the administrator to

participate in cloud bursting target selection process by

manually performing selection via GUI.

Cloud monitoring system: Component which col-

lects, aggregates and stores diagnostic and monitoring

data obtained from hybrid cloud instances. While every

CP provides its own cloud performance monitoring

system (for example, Amazon CloudWatch [14] or

Cloud Monitoring [15]), they are not designed to be

cloud-agnostic, which renders their usage in multicloud

scenarios difficult. Notwithstanding that, there are some

systems which are oriented for multicloud usage [16]

and some of them can be used in our solution. While it

does not seem reasonable to make such system truly

decentralized, it can benefit from certain techniques

such as replication. Monitoring system output can be

used to decide whether we need to perform scaling in

some particular situation.

Adapter components for interacting with external
CP: While there are some efforts to provide a common

standard API for the cloud [17], at the moment each

cloud provider still uses vendor-specific interfaces for

cloud programmatic access and communication with

their cloud resources. This brings forward the need to

maintain separate driver components for each possible

cloud bursting target. In our solution, those components

constitute the part of the application, that is deployed

on every instance.

IV. CONSIDERATIONS FOR EVALUATION AND

COMPARATIVE ANALYSIS

In this section we will present metrics and other

considerations for evaluation and comparative analysis

of our proposed approach which is done as a part of

future research on this topic. In order to test behavior

and performance of the system we are currently building

a simulator for cloud bursting scenario, which contains

all components described in Section III-C and mocks

necessary interfaces that are present in real cloud set-

ting.
First, we propose several basic performance metrics

as follows.

• Average time of job request in job request queue.

This metric shows the overall responsiveness and

effectiveness of the system.

• Average amount of service query executions (re-
formulations) for given job request. This metric

reflects the responsiveness of the system and its

sensitivity to the private cloud overload.

• Average lifetime of a resource in the resource pool.
This metric estimates the size of the hybrid cloud.

It can be measured separately for SP and external

CP instances to show how heavily SP depends on

leased resources.

• Average cost per job request. This is a metric that

shows how costly is job request processing from

SP perspective.

• Network load. This metric shows how efficiently

the system is using network resources.

Next, there is a need for comparing proposed solution

with other research results in this area. While there

already are multitude of comparative analysis research

for traditional cloud systems, intercloud and cloud burst-

ing systems presents certain complexity in this aspect

because of novelty of the topic. The following shows

how our solution fall into intercloud systems taxonomy

introduced in [1]: a) peer-to-peer multicloud library

(architecture); b) SLA based (brokering approach); c)

singular/periodical jobs, compute- and data-intensive in-

teractive application (application type); d) geolocation,

pricing, legislation/policy, local resources (awareness).
As a part of future research, we plan to perform com-

parison based on the following characteristics: a) level
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of adhering to client SLA requirements; b) how optimal

is the use of SP costs; c) level of cloud monitoring

and how far this data is leveraged to optimize bursting

target selection; d) how system reacts to abrupt/planned

peaks in the load; e) robustness in case of partial cloud

failure. In cases when these and other criteria are hard

to measure using quantitative methods, we intend to

perform detailed analysis to show pros and cons of our

approach from the qualitative aspect.

V. CONCLUSIONS AND FUTURE RESEARCH

In this paper, we presented a distributed approach

of building cloud bursting system based on peer-to-

peer overlay originally designed for service sharing and

discovery. The main advantages of proposed approach

are a) introducing decentralized brokers, which elim-

inates single point of failure and increases robustness

of the system; b) eliminating separate resource pool

component and instead forming it in form of cross-

cloud peer-to-peer overlay, therefore making the system

highly scalable; c) utilizing well-known DHT, which

guarantees the correctness and soundness of underlying

peer-to-peer overlay; and d) modular framework archi-

tecture, which allows using wide range of existing queue

or storage components.

As for prospective directions for future research,

we intend to automate decision making process for

choosing most suitable cloud bursting target, possibly

by using detailed analysis of historical data to build a

knowledge database, which then could be used to infer

optimal choice. Another direction is adapting proposed

model for hosting business workflows, since we believe

that our approach is suitable for many scenarios that

emerge in workflow orchestration and execution due to

its distributed nature.
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